
A Reliability Model for Distr ibuted Adaptation

Mark Yarvis, Peter Reiher, and Gerald J. Popek
University of California, Los Angeles

Abstract—End-to-end connectivity is growing increasingly di-
verse, with orders of magnitude differences in character istics
throughout the network. At the same time, most applications
assume a level of network character istics below which they ei-
ther provide no service, or service at a cost higher than the user
is willing to pay. Open architecture networks can help applica-
tions degrade gracefully when network conditions are poor by
pushing adaptation technology into the network. Unfor tunately,
since adaptation seeks to change the data stream dur ing trans-
mission, it is incompatible with the traditional model for reliable
data streams.

A new model of reliability is required to allow general adap-
tation of reliable data streams. We propose one possible model
that provides reliable delivery of the semantic meaning in the
data stream despite adaptation. We present this model in the
context of Conductor, a framework for distr ibuted adaptation.
By using a reliability model that is compatible with adaptation,
Conductor allows arbitrary, distr ibuted components to operate
on a data stream without reducing end-to-end reliability. While
Conductor is one possible adaptation service, it is also an exam-
ple of the type of reliability model required in open architecture
networks.

Index Terms—adaptation, reliable transport, semantic seg-
mentation, proxy.

I. INTRODUCTION

Network applications often have major problems when
network characteristics change during use. Applications must
adapt to these changes to provide satisfactory service. An
application’s communications may cross landlines, satellite
links, dial-up service, wireless relays, and asymmetric links,
often without user or application awareness. These various
links differ in many ways, and even a single type of link can
vary substantially, causing severe problems. Early attempts
at Internet telephony were largely rejected due to frequent
unexplained segments of garbled content. Some users aban-
doned the Web because of unpredictable and intolerable de-
lays in accessing graphically dense but information-light,
content. There are many other examples.

The behavior of network applications can be adapted to
these changing conditions in many ways, while still deliver-
ing the necessary services: reducing the fidelity of video,
graphics and audio; switching to text only; adding applica-
tion-level redundancy for critical values; encrypting sensitive
content; etc. The open architecture approach is a very flexi-
ble way to adapt an application’s network usage by pushing
adaptive services into the network. In many cases, adaptation
can only be effective when deployed into the network. It is

This work was partially supported by the Defense Advanced Research Proj-
ects Agency under contract DABT63-94-C-0080. Authors may be contacted
at: { yarvis, reiher, popek} @fmg.cs.ucla.edu.

important, however, that the addition of adaptive services
does not decrease the overall reliability of the system.

Unfortunately, the most popular model for reliability —
exactly-once, in-order delivery of bytes — generally assumes
that the stream will not be modified in transit. This model
may be neither practical nor desirable. Adaptive techniques
seek to deliver a more easily transmittable version of a data
stream, generally by modifying the data in transit. Consider
an adaptation that reduces the color depth of an image. Al-
though the user prefers the adapted version, the number of
bytes transmitted will no longer correspond with the number
of bytes received, confusing the reliability mechanism.

Some adaptive systems have chosen to limit the allowable
adaptations to protect the reliable transport from possible
confusion [2, 9]. Generally, these systems do not allow any
modification of the original byte stream. Other systems allow
more general adaptation, providing a support structure that
hides the presence of adaptation from the reliable transport
[1, 5, 8]. For instance, an end-to-end TCP connection can be
split in two, allowing an adaptation to occur in-between.
Unfortunately, hiding the adaptation from the reliable trans-
port introduces a new point of failure to the connection. If
the adaptation system were to fail, the end-to-end connection
will also fail.

We propose a new model of reliability that is compatible
with both an application’s need for a reliable transport and
the user’s desire to receive gracefully degraded service
through the use of adaptation. This model provides exactly-
once, in-order delivery of adapted data. While we present
this model in the context of the Conductor distributed adap-
tation service, the model could be applied to any open archi-
tecture network.

II. DISTRIBUTED ADAPTATION

Adaptation allows applications to gracefully degrade their
services to the dynamically changing levels of service poten-
tially present in the network. Applications place an increas-
ing level of expectation on the network, as is evident in the
latest breed of multimedia, Web-based, and thin-client soft-
ware. When the network does not conform to the expected
level of bandwidth, latency, jitter, security, packet loss, and
monetary cost, many applications either provide no useful
service, or provide a service at a cost greater than the benefit
to the user.

This situation is not likely to change. Although new tech-
nologies such as high-speed backbones and DSL continue to
increase the standard of connectivity, there will always be
cases in which the user experiences a substandard quality of
service. In particular, mobile-enabling technologies like met-

ropolitan-area wireless services [10] and personal-area net-
works [7] typically lag in performance and security. In addi-
tion, many network links that have sufficient nominal capac-
ity simply become overloaded (e.g., the “Slashdot effect” 1).
Thus, the encountered range of network characteristics is
increasing.

One way in which researchers propose to promote graceful
degradation of applications is to push adaptive technologies
into the network. Users of a metropolitan-area wireless net-
work can browse the Web more quickly by allowing fetched
images to be reduced in quality by a proxy node, immediately
prior to transmission across the wireless network [6].

When the network is truly heterogeneous, consisting of
several links of varying characteristics, use of several points
of adaptation may be beneficial. Consider a businessman in a
carpool using a PDA. The PDA might connect, via a per-
sonal-area network, to the car’s cellular phone. The cell-
phone is periodically connected to the office network, which
is in turn connected to the Internet via an ISDN router. A
variety of adaptations might be desired. Encryption might be
employed on the wireless, cellular, and Internet links. How-
ever, encryption cannot be provided end-to-end, or it would
interfere with other desirable adaptations. For instance, an
adaptor deployed on the cellular phone could control the con-
nection status. When the phone connection is offline, only
high-priority traffic should be allowed to establish the costly
connection. However, when the connection is already estab-
lished, any traffic may pass, since the line’s use is virtually
free. This adaptation must be placed on the phone itself,
since only that device is aware of the status of the connection.
Other adaptations might also be useful in this example: data
distillation for low-bandwidth links, caching of data shared
by car-poolers or office staff, or prefetching of stock quotes
when the link is active to serve later requests.

A few key characteristics tend to drive the need for dis-
tributed adaptation. Some adaptations must be deployed on a
particular device to gain access to and control over local de-
vice status. Devices such as cellular phones, ISDN routers,
and wireless MAN interfaces may require local management
of connect-time cost, highly variable bandwidth, or power
consumption. Deployment location may also determine the
number of users that will benefit from an adaptation. For
instance, a cache is most useful if it is accessible by a group
of clients. Other adaptors may not be compatible with certain
types of network links. While prefetching is useful over
high-latency links, it is counterproductive for low bandwidth
links. Thus, when a high latency link is adjacent to a low
bandwidth link, the location of the adaptor is restricted. Fi-
nally, adding security concerns to any of the above situations
typically requires link-level adaptation, rather than end-to-
end adaptation, thereby increasing the number of points of

1 Named for a popular source of technical news (http://www.slashdot.org),
the “Slashdot effect” refers to a sharp increase in traffic experienced at a
WWW server that has been referenced at a popular Web page, causing un-
usually high latency.

adaptation. For a mobile user, it is not uncommon for several
of these cases to arise, all requiring distributed adaptation.

Reliability is a key issue in distributed adaptation. When
only a single point of adaptation is present, it may be accept-
able for adaptor failure to lead to end-to-end failure. How-
ever, when adaptation is distributed in the network, each new
point of adaptation is another potential point of failure. To
support distributed adaptation, the system must remain resil-
ient to the failure of adaptor modules and the nodes upon
which they execute. The adaptation framework must there-
fore provide a reliability model compatible with adaptation.

III. THE CONDUCTOR ADAPTATION FRAMEWORK

We have constructed an adaptation framework called Con-
ductor to demonstrate the value and feasibility of distributed
adaptation. While we use Conductor as a basis for the dis-
cussion of a new model for reliability, the concepts we intro-
duce could be implemented in other contexts as well. Con-
ductor is a stream-oriented distributed adaptation service that
is transparent to applications. Conductor consists of two
main pieces: adaptors, and the framework for deploying those
adaptors.

A. Adaptors

Conductor adaptors are self-contained pieces of code that
perform some particular adaptation, often only for a particu-
lar type of data stream. The set of Conductor adaptors is ex-
pandable. Each Conductor node might have a different set of
adaptors available for local use. Adaptors are frequently (al-
though not necessarily) paired, converting from a given pro-
tocol to a protocol better suited to the transmission medium,
and back to the given protocol. As a simple example, a pair
of adaptors might be used to compress and subsequently de-
compress a data stream. Several adaptations can also be
combined serially or composed together. For example, an
encryption/decryption pair might be composed within a com-
pression/decompression pair, encrypting the compressed data
and allowing the transmitted stream to be both smaller and
more secure.

Adaptor pairing allows the protocol expected by the appli-
cation to be delivered at the endpoint. By conforming to the
expected protocol, Conductor is able to provide an applica-

TCP

Interception Layer

Adaptor
Runtime

User
Application

User Space
Kernel Space

E
nv

ir
on

m
en

t
M

on
it

or

P
la

nn
er

Conductor

Figure 1: The Conductor architecture deployed on a node.

tion-transparent service. However, paired adaptors need not
regenerate the original data flow, nor are adaptations neces-
sarily user-transparent. Adaptors may deliver any data to the
application, so long as it conforms to the expected protocol.
For instance, an adaptor may cause a color image to be trans-
formed to a black-and-white image, or frames to be dropped
from a video stream. These adaptations will clearly affect the
user’s experience, but must still conform to the protocol ex-
pected by the application. Thus, Conductor is application-
transparent, but not user-transparent.

B. Framework

Conductor’s runtime framework supports adaptor selec-
tion, deployment and execution. Figure 1 shows the archi-
tecture of Conductor on a single node, consisting primarily of
a user-space module that handles monitoring of data flows,
delivery of data streams to local adaptors, transmission of
data streams between Conductor nodes, planning for new
data flows, and recovery and reliability. In addition, in most
systems Conductor requires a small kernel modification to
trap data flows, allowing Conductor to examine them for pos-
sible adaptation. In some systems, existing extensibility
mechanisms may allow trapping of data flows without kernel
modifications [11].

C. Data Path Setup

Conductor’s initial goal for each new connection is to gain
access to the data stream on the client and server nodes and at
various points along the route from the client to the server.
To accomplish this, Conductor should be present on partici-
pating client and server nodes. Preferably, Conductor would
also be deployed on nodes that are at or near gateways be-
tween networks of differing characteristics, allowing adapta-
tion modules to be deployed at these points.

When a new TCP connection is started by an application
(which is unaware of the presence of Conductor and of the
prevailing network conditions), Conductor traps the opening
of its socket, effectively kidnapping the TCP stream. Con-
ductor can then provide the illusion of end-to-end TCP, when
actually Conductor is handling the reliable end-to-end deliv-
ery of data.

Once Conductor has chosen to intercept a connection, it
must form a path over which data will flow. Presumably this
path will contain both Conductor-enabled and non-enabled
nodes. Conductor employs standard IP routing and the trans-
parent proxy capability built into the Linux kernel [12] to
identify Conductor-enabled nodes along the normal data path.
The Conductor framework on the client node will attempt to
contact the server node. If a Conductor-enabled node is pres-
ent along the path to the server node, it will intercept the con-
nection and repeat the process.

As this path of potential adaptation sites is formed, each
discovered node forwards, along the path, information about
its local network conditions and node capabilities Once the
path is formed, the information required to generate a plan

has been collected at the destination node. This information
is used to generate a plan specifying adaptors to deploy. This
plan is then delivered back to the participating nodes in one
round-trip message, causing a data path to be created with the
appropriate adaptors inserted.

Once the path is set up, Conductor forwards the user’s data
stream down the path. Figure 2 gives a simple view of Con-
ductor in use. At each Conductor node, an adaptation might
be applied to the data. Some adaptations do not change the
data, but many do. Potentially, the bits that arrive at the des-
tination may be very different than the bits that were sent.
However, if Conductor’s planner has done its job properly,
the arriving bits are the most suitable, semantically meaning-
ful version of the data that was possible to deliver in the face
of prevailing network conditions. For example, while trans-
mitting a video stream, dropping color in the face of limited
bandwidth yields black-and-white frames that are semanti-
cally related to the color frames that were sent, but the overall
sets of bits are very different.

D. Split-TCP

Conductor uses TCP for reliable data transmission between
Conductor nodes. Effectively, Conductor partitions the end-
to-end TCP connection into a series of individual, node-to-
node TCP connections. Use of split-TCP allows each Con-
ductor node unrestricted access to the data stream without
interfering with the underlying transport mechanism. The
primary advantage of this approach is ease of implementa-
tion. We could have instead built a new transport layer (or
modified TCP) to both provide reliability and interoperate
with adaptation. By using the existing TCP transport, we
avoid duplicating the effort of designing a reliable transport.
Also, the TCP interface is convenient in that it provides Con-
ductor transparent interoperation with a large number of ex-
isting applications. Finally, previous research has suggested
that splitting an end-to-end TCP connection can provide a
significant performance gain in heterogeneous networks [3].

 Unfortunately, split-TCP does not maintain end-to-end
reliability semantics. Data transmitted from one endpoint is
acknowledged before it is received at the opposite endpoint.
Thus, if the intermediate node fails, data loss can occur. To
improve end-to-end reliability, Conductor includes an addi-
tional mechanism that is compatible with adaptation. Con-
ductor’s reliability scheme is described in detail in Sections V
and VI.

Client
Application

Server
Application

Adaptor
Pair

Conductor
Framework

Figure 2: Conductor intercepts client-server communication channels
and deploys distributed adaptors.

A prototype of Conductor has been developed and used to
successfully demonstrate that distributed adaptation can pro-
vide a real benefit to users [14]. To succeed, however, the
additional points of failure that Conductor adds must not re-
duce the overall reliability of the system.

IV. RELIABILITY IN DISTRIBUTED ADAPTATION

TCP guarantees exactly-once, in-order delivery of a byte-
stream and provides a convenient model for application writ-
ers. However, this model is entirely at odds with adaptation.
Adaptation seeks to deliver a version of the transmitted data
that is cost-effective, so the bytes delivered may bear no re-
semble to the bytes transmitted. A new model of reliability is
required that instead provides exactly-once, in-order delivery
of adapted data.

At the same time, adaptation adds new components to a
connection: adaptor modules, nodes upon which adaptation is
occurring, and the links between those nodes. To avoid re-
ducing the overall reliability of a connection, the end-to-end
reliability mechanism must protect against the failure of these
new components. Notice, however, that nodes play a sup-
porting role along the data path. To recover from a node fail-
ure, we need only consider the resulting failure of one or
more adaptors and links.

When a failure does occur, the remaining nodes can re-
establish a data path with the same mechanism used to estab-
lish the original data path. Any adaptors no longer in the data
path are then assumed to have failed. Once the data path is
restored, recovery must be provided, not only for lost data,
but also for failed or lost adaptors.

A. Complexities Introduced by Distributed Adaptation

Protocols that provide transport-level reliability (e.g., TCP)
are typically implemented at the endpoints. Packets may
flow along any path and do not depend on particular interme-
diate nodes. Network-level protocols mask the failure of
links and routers along the transmission path.

The introduction of adaptation into the network compli-
cates this model. Adaptation modules execute on particular
nodes in the network. In general, this constrains the data path
and adds additional points of failure, both in terms of the
software adaptors and the hardware on which they are de-

ployed. Conductor splits the TCP connection that would
normally be created from client to server into several inde-
pendent TCP connections, one between each adjacent pair of
Conductor nodes. In doing so, there is a danger of violating
the normal, end-to-end reliability model, whereby no data
should be acknowledged before it is delivered. Fundamen-
tally, however, Conductor’s use of split-TCP will be accept-
able if the end-to-end reliability of the system does not de-
pend on the reliability of the intermediate nodes.

When a failure occurs, recovery is complicated by the fact
that adaptors are constantly operating on the stream. The
system must ensure that the resulting data stream conforms to
the protocol expected by the application. Maintaining data
integrity is not simple, however. An adaptor failure does not
necessarily occur at a point appropriate for switching back to
the original stream. For example, consider an adaptor that
adds a lowsrc attribute to an image tag in an HTML data
stream (see Figure 3). If a failure occurs in the middle of the
tag, a byte-count retransmission scheme will not necessarily
retransmit from the beginning of the tag. The resulting
stream may be neither the adapted data nor the original data,
and may not even be syntactically correct.

Even if an adaptor fails at an appropriate point (for
switching adaptors) in the stream, it is still difficult to effect
retransmission of lost data. For instance, if an adaptor con-
verts color video frames into black-and-white, the adapted
frames will consist of a much shorter byte stream. If a failure
occurs after frame 100, a simple byte-count retransmission
scheme might begin retransmission after frame 50, duplicat-
ing data the user has already received. The information that
correlates the data received downstream with the data trans-
mitted is crucial to determining an appropriate point of re-
transmission. If this information is lost with the adaptor, cor-
rect transmission can not continue.

Any reliability scheme must also preserve the properties of
the adaptation activities. In Conductor, adaptors are fre-
quently deployed in pairs and may also be composed to-
gether. Each paired adaptor expects its counterpart to be pre-
sent. For example, an encryption adaptor should not be al-
lowed to operate without its corresponding decryptor. Simi-
larly, the inner pair of two composed pairs may expect the
outer pair to be present. Consider an adaptor pair that takes a
motion-JPEG stream, drops every other frame for transmis-
sion, and then restores the original frame rate by duplicating
each frame for delivery. To deploy such an adaptor in an
MPEG stream, a pair of adaptors that converts MPEG to mo-
tion-JPEG and back must surround the frame-dropping pair
(see Figure 4). Should one of the format-converting adaptors

Byte 1

<img low

Retransmit
from byte 9

src=b.jpg src=a.jpg>

(a)

(b)

(c)

Figure 3: Failure recovery using a byte-count – (a) data arrives at adap-
tor; (b) adaptor fails while adding lowsrc attribute and retransmission is
requested; (c) retransmission produces an undesirable result.

Motion-
JPEG

MPEG
Stream

�
-rate

Motion-JPEG
Motion-
JPEG

Motion-JPEG to
MPEG

MPEG to
Motion-JPEG

Frame
Duplicator

Frame
Dropper

MPEG
Stream

Figure 4: A sample composed adaptation.

fail, the repair action must also involve the frame-dropping
pair.

We do not believe that these problems can be adequately
addressed by the applications themselves. Most of the prob-
lems described above require adaptation-specific knowledge
for proper failure recovery, which application-writers may
not have. While simple schemes, like restarting a connection
from the beginning upon failure, are possible, this is not a
desirable programming model. Instead, we have designed a
reliability scheme that is controlled by the adaptation system
and requires adaptor participation rather than application par-
ticipation.

B. Redefining Reliability

Most reliability models assume that data is immutable
during transmission. Each transmitted byte travels through
the network and is received, unchanged, at the destination.
The measure of reliability in such a system is exactly-once,
in-order delivery of bytes. This type of reliability can be
guaranteed by the endpoints, the failure of which will cause
the connection to fail. Notice that the property of immutabil-
ity is required by the notion of exactly-once delivery.

When adaptation occurs within the network, the bytes
transmitted may be very different from the bytes that travel
through the network. The bytes seen at various points in the
network may, in turn, be different from the bytes that are
eventually delivered. For example, if an adaptor is used to
reduce the resolution of a video stream, it is acceptable that
some bytes are received, while other bytes are not. Exactly-
once delivery of bytes is, therefore, not a desirable model. In
this example, it is exactly-once delivery of the video frames
that is important.

We propose that in the face of adaptation, a reliable system
should preserve two properties of a data stream:

1. Each semantically meaningful element in the trans-
mitted data stream is delivered exactly once and in or-
der.

2. Delivered data conforms to the expected protocol.

The first property requires that in order for adaptation to
occur, the data stream must be carved up into segments that
are semantically meaningful within the protocol being trans-
mitted. For instance, a video stream might be broken into
frames, while an HTML stream may be divided into tags and
text. Each segment must be delivered exactly once, in some
form. The data may be original, or adapted, or deleted en-
tirely, but the segment must arrive exactly once, and in order.

The second property restricts the content of the segments
at the time of final delivery. If halving the frame rate is
within the constraints of the protocol expected by the appli-
cation, then delivering empty segments in the place of every
other frame might be acceptable. The second property also
requires that segments have an appropriate scope so that an
adaptor failure will not violate the expected protocol. These
properties ensure that some viable version of the data pro-
duced at the source will arrive at the destination.

C. Attaining Reliability

Conductor combines three mechanisms to provide reliabil-
ity in the face of adaptation. Conductor employs a TCP con-
nection between adjacent Conductor nodes along the data
path, providing reliable delivery between adaptor modules on
different nodes. When Conductor nodes, adaptors, and the
links between them do not fail, end-to-end transmission of
adapted data proceeds reliably and in order. When one of
these elements fails, data loss can result. Conductor must,
therefore, detect link, node, and adaptor failures. Since Con-
ductor provides the run-time environment for adaptors, it can
easily detect their failure. For simplicity, the failure of nodes
and links is assumed to cause one or more TCP failures that
can be detected at the adjacent Conductor nodes. Once a
failure is detected, Conductor provides two additional reli-
ability mechanisms to prevent end-to-end connection failure.

First, Conductor provides a data recovery mechanism to
protect against data loss on the stream. Once the data path is
restored, Conductor must determine what data has already
been received downstream and request retransmission from
this point. As previously described, this mechanism must be
compatible with adaptation, providing exactly-once delivery
of semantic meaning.

Second, Conductor provides an adaptor recovery mecha-
nism. Conductor must determine which components were
lost and ensure that proper adaptor composition is preserved.
For efficiency, this mechanism should not require global co-
ordination across all nodes in the data path.

Since node and adaptor failures result in the loss of infor-
mation crucial to recovery, the key is to maintain enough
information at surviving nodes to guarantee recovery from
loss. The data recovery and adaptor recovery mechanisms
are described in detail in the following two sections.

V. DATA RECOVERY

The goal of data recovery is to prevent data loss if a por-
tion of the data path fails. Each semantic element of the data
stream should be delivered exactly once. Furthermore, ad-
aptation of those semantic elements must not be incomplete.
In other words, a particular adaptor should adapt an entire
semantic element, or it should adapt none of it; partial adap-
tation should be disallowed.

A. Semantic Segmentation

These goals are accomplished using a technique called se-
mantic segmentation. A semantic segment is the unit of re-
transmission for data recovery. Semantic segments also pre-
serve the correspondence between an adaptor’s input and
output data streams. Adaptors, which have an understanding
of the format of the data stream and the operations they will
perform on that stream, have the responsibility for maintain-
ing appropriate segmentation.

The initial data stream consists of bytes being transmitted
by the application and intercepted by a Conductor module on
the source node. These bytes are considered by Conductor to

be logically segmented into one-byte segments, which are
numbered sequentially. Note that it is not necessary, at this
stage, to track segment boundaries, or segment numbers. The
data can be transmitted with very little overhead; simply
counting the bytes can identify individual one-byte segments.

Adaptors form larger segments by combining smaller seg-
ments. When segments are combined, the new segment re-
ceives the segment ID of the last combined segment. When
operating on the data stream, adaptors must perform segment
combination in either of two situations:

1. When modifying a semantic element in the data stream
that crosses a segment boundary

2. When adaptor failure between segments could other-
wise violate the expected protocol

Consider the example of an adaptor that compresses video
frames. Before each frame can be compressed, the segments
making up that frame would also be combined into one seg-
ment. If, hypothetically, the stream consisted of 100-byte
frames, each frame would initially be represented in the
stream as 100 1-byte segments. If the first frame began with
segment 1, the second would begin with segment 101. Be-
fore reducing each frame to 50 bytes, the adaptor would
combine the 1-byte segments for a given frame into a single
segment. The first 100-byte frame would be in segment 100,
and the second would be in segment 200. Each segment
would then be adapted, producing a 50-byte segment labeled
100 and another labeled 200. The resulting 50-byte segments
contain the same semantic content as the 100-byte segments
and the 100 1-byte segments; only the format has changed.

In the HTML example from Section IV, when adding a
lowsrc attribute to an image tag, the adaptor would create a
segment that contains the entire tag (see Figure 5). Because
the entire tag is contained in a segment, the lowsrc attribute
can be added without disturbing overall segment numbering.
In both of these examples, the segments chosen correlate the
semantic meaning of the data in the stream, before and after
adaptation, and provide an appropriate granularity for stop-
ping the given adaptation.

Subsequent adaptors may cause further segment combina-
tion, and segments may grow to arbitrary length. It is not, in

general, possible to correlate individual bytes in a segment
with their original source segments. As a result, a segment
cannot be broken down without violating the rules of seg-
mentation. Once combined, segments can never be taken
apart. At the destination node, the Conductor module simply
removes any segment markers and delivers the resulting data
to the application (with one restriction, given in Section C).

B. The Adaptor API

Semantic segmentation is implemented as part of the
adaptor API. Each adaptor is given a window into the data
stream. An adaptor is able to view and modify the data
stream through this window. To read new data into the win-
dow, an adaptor performs the expand() operation. To
write data out of the window, the adaptor performs the con-
tract() operation. Thus, the adaptor controls the flow of
data by moving the window boundaries along the data stream.

The operations that adaptors can perform on the data
stream enforce the rules of semantic segmentation. An
adaptor can freely read the bytes within the window. Seg-
mentation will not be affected. To modify the data stream, an
adaptor can use the replace() operation, which replaces a
portion of the data in the window with a new set of bytes.
The data being replaced may belong to several adjacent seg-
ments. These segments must first be combined into one large
segment and labeled appropriately. Once contained within a
single segment, the old data can be removed and replaced
with the new data. Facilities are also provided for more com-
plex operations such as deletion and insertion and for multi-
ple operations that constitute one semantic modification to
the data stream.

Notice that the adaptor API controls segmentation of the
data stream. Therefore, while a malfunctioning adaptor can
provide incorrect data to the user, it cannot violate the rules
of segmentation.

C. The Recovery Protocol

When a node, adaptor, or TCP link fails, some portion of
the data stream may be lost. Conductor uses the semantic
segment as the unit of retransmission.

To allow retransmission, Conductor caches segments in-
ternally at the source node. Since we can depend on the
source node not to fail (as is the case with traditional reliabil-
ity mechanisms), this cache provides a durable point of fail-
ure recovery. To improve the speed of recovery, caching can
also be added at other points along the data stream.

Recovery is initiated at the point immediately downstream
of the failure. First, the data path is spliced across the failure.
In the case of a failed node or link, a new TCP connection
will be initiated, replacing those that have failed. Next, any
segment that has been partially received is discarded. If the
beginning of a partial segment has already been passed
downstream, a cancellation message will be sent downstream.
Note that for applications unaware of the adaptation system,
the possibile cancellation of partial segments requires that the

Segment 1

Segment 15

(a)

(b)

(c)

Segment 15

Segment 15

Figure 5: Proper segmentation to adapt an HTML stream – (a) the
stream initially has 1-byte segments, (b) the adaptor combines these
segments, and (c) performs the adaptation.

adaptation system not deliver any segment to the application
until that segment is complete.

The node downstream of the failure then sends a retrans-
mission request containing the ID of the last segment re-
ceived. The retransmission request travels upstream until it
can be serviced, either by a cache or by an adaptor (perhaps
from an internal cache). To preserve in-order delivery, all
data transmission to nodes awaiting retransmission is sus-
pended (incoming segments are discarded) until retransmis-
sion begins. The mandatory cache at the source node provides
a fallback source if retransmission does not occur prior to this
point. Once a source for the requested segment is found,
transmission begins with that segment and proceeds in-order
with the following segments. Note that the possibility of re-
transmission requires adaptors to accept a rollback to a previ-
ous point in the data stream, or fail. Since semantic segmen-
tation ensures semantic equivalency of data, retransmission
can occur with any version of the desired segment, including
the original segment. The data can then be re-adapted in the
same way, or perhaps differently.

Continuing the video example from the previous section,
consider the case in which the first frame (in segment 100)
and part of the second frame (in segment 200) are received at
a point immediately downstream from the decompression
adaptor (see Figure 6). If both the compression and decom-
pression adaptors fail, Conductor will discard the part of
segment 200 that was partially received downstream and re-
quest retransmission starting at segment 101. Retransmission
will thus begin with the second frame, as desired. If, how-
ever, only one of the two adaptors fails, although the lost data
can be recovered, retransmission through the remaining
adaptor will not produce the correct results. Additional steps
are required to ensure that a correct set of adaptation modules
is present when the data flow resumes. This problem will be
addressed in Section VI.

The above recovery scheme provides failure-based recov-
ery. Since a retransmission request occurs when there is a
failure and indicates exactly what data is required for re-
transmission, acknowledgements (beyond what is already
provided by TCP in the underlying connection) are not re-
quired. However, in order to limit the size of cache growth,

and to allow adaptors to free any accumulated internal state,
the destination node generates acknowledgements whenever a
segment is completely received. Acknowledgements are cu-
mulative, allowing all combined segments to be acknowl-
edged when a segment is finally received at the destination.

D. Discussion

Semantic segmentation is effective because it allows
enough state to be maintained outside of the adaptor modules
to properly control retransmission.

Provided that adaptors follow the rules of segmentation,
retransmission after a failure will always provide correct re-
sults. A segment lost downstream can always be replaced by
one or more segments from upstream that have equivalent
semantic meaning. Retransmission will also occur from a
point at which adaptor changes (i.e., the possible failure of an
adaptor) will not affect the correctness of the resulting data
stream.

Moreover, retransmission will always be possible. Data
will always be available because a cache at the source node is
mandatory. A segment boundary downstream will always
correspond to a segment boundary upstream, since segments,
once combined, are never divided.

Finally, proper end-to-end reliability semantics are pre-
served. Although the individual TCP connections provide
acknowledgements before data is received at the destination,
Conductor monitors the data received at each node (including
the destination node), correlates that data with the stream
transmitted from the source, and performs retransmissions in
response to failure.

VI. COMPONENT RECOVERY

Frequently, several adaptors are deployed together, oper-
ating on the same data stream, but potentially distributed
throughout the network. A given adaptor may depend on the
presence of other adaptors for correct operation. Recall that
Conductor allows adaptors to be paired to convert from one
protocol to another protocol and back. For example, an
adaptor pair that compresses and decompresses an HTTP
stream maintains a compressed-HTTP protocol between the
pair of adaptors. A correct data stream can only be presented
to the application if either both adaptors are present or neither
adaptor is present.

Two pairs of adaptors can also be composed together.
Composition of adaptors generates a hierarchy of protocols.
For example, recall the data path in Figure 4. An MPEG
stream flows through a pair of adaptors that converts the
stream to motion-JPEG. Within that pair is another pair of
adaptors: one of which drops every other JPEG frame, and
the other which duplicates the frames, halving the frame rate
for transmission and then restoring it again. Between this
pair, therefore, the data conforms to the half-rate-motion-
JPEG protocol.

When adaptor composition is present, the inner pair ex-
pects as input and generates as output the protocol found

Frame 3
(segs 201-300)

Frame 2 (seg 200)

Reestablish
connection

Retransmit starting at 101Cancel 200

��

Frame 1 (seg 100)

Frame 1
(segs 1-100)

Frame 2
(segs 101-200)Frame 1

(seg 100)

Frame 2
(seg 200)

Figure 6: Recovery from the failure of an adaptor pair that com-
presses frames in a video stream.

within the outer pair. Thus, the inner pair is dependent on the
outer pair. Conductor must ensure that dependencies be-
tween adaptor pairs are also restored after a failure.

A. Recovery Strategies

Two actions are possible when an adaptor fails. A failed
adaptor could be re-instantiated. The replacement adaptor
could be created on the same node, or on a different node (in
the case of node failure), provided its logical position in the
data stream remains the same. Unfortunately, because some
adaptors maintain state, this is not always possible. For in-
stance, many compression algorithms produce their diction-
aries on the fly. A replacement decompression adaptor would
be out of sync with an existing compression adaptor.

The other alternative is not to replace the failed adaptor,
but to instead remove any adaptors that depend on the failed
adaptor. Adaptor removal is always safe because the data
recovery algorithms can always restore lost data, as in the
case of a failure. There will, however, be the performance
penalty of data retransmission. Once the required adaptors
are removed and a stable set of adaptors remain, the adaptors
that were removed can typically be replaced. By instantiating
related adaptors together, synchronization is maintained.

B. Tracking the Protocol Hierarchy

The key to restoring a balanced set of adaptors after a fail-
ure is determining which of the remaining adaptors also need
to be removed. The solution is complicated by the fact that a
given Conductor node may not know which adaptors have
been lost. In addition, to speed recovery, it would be best if
recovery could be accomplished using only local information,
as is the case for the data recovery algorithm.

To allow component recovery, additional information is
recorded at the time that adaptors are deployed. For each
logical link between adaptors, Conductor keeps track of the
hierarchy of composed adaptors that surround that link. In
Figure 7, the hierarchy recorded for the link labeled 1 is A
(for the encryption adaptation). Similarly, the hierarchy re-
corded for the link labeled 2 is B/C (for the MPEG-Motion-
JPEG and the frame rate reduction adaptations).

When an adaptation is installed, the new hierarchy is triv-
ial to obtain as a function of the existing adjacent hierarchy.
For instance, before the frame reduction adaptation is de-
ployed, the type hierarchy at point 2 is B, so it is trivial to
determine that the new hierarchy on the link created between
the pair is B/C.

C. The Recovery Algorithm

The component recovery algorithm is executed during data
recovery, prior to data retransmission. Recall from Section V
that data path recovery begins by splicing together the data
path. The two spliced ends will not necessarily have the
same adaptation hierarchy. Comparing these two hierarchies,
however, will reveal the target hierarchy for this link, once
the pairs to failed adaptors are removed, allowing corrective
action to be taken.

Recovery occurs as follows: The two hierarchies present
at the splice point are compared (either upstream or down-
stream from the failure) to obtain the greatest common an-
cestry, which is the correct hierarchy for this link. Two mes-
sages are generated, each containing the identity of this hier-
archy. One is sent upstream, the other downstream. Each
message will proceed, causing the removal of any adaptors
that are present, until a link with the correct type hierarchy is
discovered. Once the recovery message reaches a link with
the desired hierarchy, the recovery message is discarded.

In the previous example, if the frame duplication adaptor
were to fail, as indicated in Figure 8, the two hierarchies pre-
sent at the splice point would be B and B/C. The greatest
common ancestry is simply B. A message containing this
information is sent in each direction. In the downstream di-
rection, B is already present, so no action is taken. In the
upstream direction, the matching pair to the failed adaptor is
removed, after which the proper hierarchy is achieved.

Recovery messages also affect any data caches maintained
by Conductor. These caches store data that has already been
adapted. Since the goal of a recovery message is to change
the type of data flowing at a particular point in the data
stream to conform to a new type, any cache encountered by a
recovery message must be cleared. Otherwise, a retransmis-
sion request could be serviced by data of the wrong type.
Since caches in the middle of the data stream only enhance
performance, clearing a cache will not affect correctness.
Note that it will never be necessary to clear the cache at the
source node, since it is located ahead of all adaptors.

For the example shown in Figure 8, any cache present
between the frame dropping and frame duplication adaptors
would be cleared. Notice that in some cases, including this
example, an adaptor may not change all segments, and
unchanged segments do not have to be removed from the
cache. However, we believe that the additional information

AABB C C
Video
Stream

Motion-JPEG to
MPEG

MPEG to
Motion-JPEG

� �

Frame
Duplicator

Frame
Dropper Decryptor Encryptor

Figure 7: A sample adaptation hierarchy.

A ABB C C Video
Stream

Motion-JPEG to
MPEG

MPEG to
Motion-JPEG

Frame
Duplicator

Frame
Dropper Decryptor Encryptor

B B/C

Recover type B

Splice

Figure 8: Recovery of appropriate pairing after failure of the frame
duplicator.

required to allow a cache to determine which data to keep is
not worth the benefit.

D. Discussion

This algorithm works because enough information is kept
locally to determine which adaptors to remove upon any pos-
sible failure. Comparison of the hierarchy at any two points
will obtain the correct hierarchy that should be present if all
adaptors between those points were to fail. All that remains
is to remove the now inappropriate adaptors.

Furthermore, by placing the recovery messages into the
data flow, surviving data can be processed before recovery is
attempted. For example, if an encrypting adaptor fails, data
that survived the failure and is in transit to the decryptor can
be processed by the decryptor before it is removed. The re-
covery message will follow this data and trigger removal of
the decryptor after the data is processed. On the other hand,
if the decryptor fails, the component recovery algorithm must
only ensure that the encryption adaptor is destroyed before
the data recovery algorithm performs retransmission of the
segment following the last decrypted segment.

VII. RELATED WORK

Many adaptive systems have preceded Conductor. Some
have been tremendously successful, demonstrating that ad-
aptation can greatly improve the user’s experience. Adap-
tation systems that operate on reliable streams can be divided
into two categories: those that preserve end-to-end reliability
semantics, and those that do not.

Indirect-TCP [1] provides one form of adaptation that
seeks to improve the performance of TCP in the face of dras-
tically different networks. TCP does not react well to the
high error rates and hand-off behavior of wireless links.
Rather than change TCP on both wired and wireless hosts to
better support wireless users, Indirect-TCP seeks to provide a
gateway between the wired and wireless networks. Standard
TCP is used between the gateway and hosts on the wired net,
while a version of TCP, optimized and extended for wireless
networks, is used between the wireless host and the gateway.

A similar approach can also be taken with application-
level protocols via the use of application-layer proxies. One
of the most advanced proxy solutions is the Berkeley proxy
[5]. This system uses cluster computing technology to pro-
vide a shared proxy service for a wide variety of PDAs used
at UC Berkeley. The proxy is capable of providing many
important services, including transformation (changing the
data from one format to another), aggregation (combining
several pieces of data into one), caching, and customization
(typically converting a data format into one suitable for a
particular PDA). The Berkeley researchers have also exam-
ined how to use a clustered proxy service to provide highly
reliable, scaleable services to a large number of customers.

Both Indirect-TCP and the Berkeley proxy design use a
split-TCP approach, which inherently breaks end-to-end reli-
ability semantics and adds a proxy node that is an additional

point of failure. The Berkeley researchers have partially
mitigated this issue by increasing the reliability of the proxy
node. However, their reliability solution cannot be extended
to fully distributed adaptation, where adaptation might be
required at many points in the network.

Another approach, described in [8], also allows applica-
tion-level adaptation at a proxy node. However, rather than
splitting the TCP connection, the proxy node translates all
TCP meta-data traveling between the two endpoints accord-
ing to the adaptation that was performed, tricking TCP into
believing that it is still providing exactly-once delivery of
bytes. Although this approach avoids splitting the TCP con-
nection, it still fails to provide end-to-end reliability seman-
tics. If the proxy node fails, the illusion provided to the TCP
connection will vanish, at best causing failure of the TCP
connection.

Other researchers have proposed solutions that do preserve
end-to-end reliability semantics. Like Indirect-TCP, the
Snoop protocol [2] was designed to improve TCP perform-
ance across wireless links. The Snoop protocol provides a
gateway at the border of the wired network that caches all
unacknowledged packets delivered to the wireless network.
If the gateway believes that some of these packets might have
been lost, it retransmits them proactively. This scheme im-
proves TCP’s ability to react to packet loss, which occurs far
more frequently on a wireless network, while carefully
avoiding violations of the basic TCP protocol. Therefore,
failure of the gateway (or a handoff to a new gateway) leaves
a functional TCP connection.

One application-level analog of Snoop is the Protocol
Boosters [9] adaptation framework. Protocol Boosters allows
pairs of adaptation modules to be added transparently to the
protocol graph. These adaptation modules can add new fea-
tures, such as forward error correction, to existing protocols.
Provided that the adaptation is limited to adding additional
information to the data stream without disturbing the original
data, end-to-end reliability semantics are preserved. When
adaptor failure occurs, only the benefit provided by the ad-
aptation is lost.

Snoop and Protocol Boosters preserve end-to-end reliabil-
ity semantics by cleverly limiting the set of allowed adapta-
tions. Among previously existing systems, the attempt to
provide both adaptation and a traditional reliability model has
led to a choice between generalized adaptation and uncom-
promised reliability.

The semantic segmentation mechanisms presented in this
paper are somewhat similar to the synchronization facility
specified in the OSI Session Layer [4]. In the OSI model,
applications can specify synchronization points, allowing
later rollback of the communication channel. However this
facility is insufficient for providing reliability in the face of
adaptation. Endpoint-specified synchronization can not in-
sulate the transport layer from midstream adaptation nor pro-
vide proper recovery from adaptor failure.

VIII. STATUS AND FUTURE WORK

Our belief that distributed adaptation is an important facil-
ity, as the complexity of networks increases, was originally
published in [13]. Since that time, we have completed our
initial implementation of the Conductor framework. This
implementation allows selection and distributed deployment
of adaptor modules into a network. These adaptor modules
can then perform arbitrary operations on a data stream.

We also constructed a sample set of adaptations that were
used to measure the potential benefit of distributed adaptation
in a sample real-world scenario [14]. We measured the per-
formance of a sample application deployed in a mobile net-
work environment and were able to show that the use of a
few carefully placed adaptors could improve response time
by 69% and reduce battery power consumption by a factor of
10. Thus, we believe that distributed adaptation services will
provide significant improvements in the cost/benefit ratio
experienced by network-challenged users.

Implementation of the reliability model described in this
paper is nearly complete. Semantic segmentation and the
adaptor API are functional, but the recovery algorithms are
under development. However, the previously reported per-
formance measurements have included all of the overheads
involved in this model in the absence of failures. With the
implementation of the recovery protocols, Conductor will
allow both arbitrary adaptation and end-to-end reliability.

Once implementation of the reliability algorithms is com-
plete, a few extensions will also be possible. One drawback
of the current system is the use of ever-growing segments.
The permanence of segment combination is troublesome
when applications are unaware of adaptation, since data can
only be delivered to applications from completely received
segments. Further research is required to determine if this is
an important limitation and whether the recovery algorithms
can be extended to allow breaking down of segments.

Another area of further research is caching adaptations.
Currently, segments are only created at an endpoint and may
not gain any additional semantic meaning in transit. As a
result, any adaptor that generates responses to queries from
an internal cache (e.g., a Web cache) is disallowed. We are
currently completing the design for an extension to the exist-
ing segmentation model that includes a “reliable round trip”
for queries and responses.

IX. CONCLUSIONS

Systems that push new features into the network have re-
ceived a great deal of attention in recent years. Meanwhile,
little, if any, research has focused on ways to provide an ap-
propriate level of reliability for such systems. Since reliable
streams are currently the dominant transport mechanism in
the Internet, it is important to consider how services within
the network affect the reliability experienced by the user and
the application software.

Historically, two stances have been taken. Some research-
ers have chosen to consider particular intermediate nodes as

having special status. Failure of these nodes is considered an
acceptable risk, which is minimized as much as possible.
Other researchers have chosen to restrict allowable operations
to those that do not jeopardize reliability.

Conductor takes a third stance by allowing arbitrary op-
erations on the data stream while protecting against all rea-
sonable failures. Conductor integrates reliability with the
ability to adapt the data stream, providing exactly-once, in-
order delivery of adapted data and enforcing the preservation
of semantic meaning from end to end. Conductor also pro-
tects the semantics of the adaptation system itself, ensuring
that a coherent set of operations occur.

Conductor is an example of one choice in the spectrum of
reliability, protecting against all failures. Further research
may indicate that by accepting some additional failure modes,
the cost of reliability can be reduced. It is clear that for open
architecture networks to succeed, some new model of reli-
ability is required. We believe that Conductor’s model is an
important first step.

REFERENCES

[1] Ajay V. Bakre and B. R. Badrinath, “ Implementation and Performance
Evaluation or Indirect TCP,” IEEE Transactions on Computers,
46(3):260-278.

[2] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz, “ Improving TCP/IP
Performance Over Wireless Networks,” Proceedings of the 1st ACM
International Conference on Mobile Computing and Networking (Mo-
biCom ’95), Nov. 1995.

[3] R. Cohen and S. Ramanathan, “Using Proxies to Enhance TCP Per-
formance over Hybrid Fiber Coaxial Networks,” Hewlett-Packard
Laboratories Tech Report #HPL-97-81, 1997. Available at:
http://www.hpl.hp.com/techreports/97/HPL-97-81.html.

[4] Willard Emmons and A. S. Chandler, “OSI Session Layer: Services and
Protocols,” Proceedings of the IEEE, Dec. 1983, 71(12):1397-1400.

[5] A. Fox, S. Gribble, Y. Chawathe, E. Brewer, and P. Gauthier, “Cluster-
Based Scalable Network Services,” Proceedings of the 16th ACM Sym-
posium on Operating System Principles, Oct. 1997.

[6] A. Fox, I. Goldberg, S. D. Gribble, D. C. Lee, A. Polito, and E. Brewer,
“Experience with TopGunWingman: A Proxy-Based Graphical Web
Browser for the 3Com PalmPilot,” Proceedings of the IFIP Interna-
tional Conference on Distributed Systems Platforms and Open Distrib-
uted Processing (Middleware ’98), Lake District, UK, Sept. 1998.

[7] Jaap Haartsen, Mahamoud Naghshineh, Joh Inouye, Oalf J. Joeressen,
and Warren Allen, “Bluetooth: Vision, Goals, and Architecture,” Mo-
bile Computing and Communications Review, Oct. 1998, 2(4):38-45.

[8] David Kidston, J. P. Black, and Thomas Kunz, “Transparent Commu-
nication Management in Wireless Networks,” Proceedings of the Sev-
enth Workshop on Hot Topics in Operating Systems, Rio Rico, AZ,
March 1999.

[9] A. Mallet, J. Chung, and J. Smith, “Operating System Support for
Protocol Boosters,” HIPPARCH Workshop, June 1997.

[10] Metricom Corp., “Ricochet Wireless Modem,” http://www.ricochet.net.
[11] D. Mosberger and L. Peterson, “Making Paths Explicit in the Scout

Operating System,” Proceedings of OSDI ’96, Oct. 1996, pp 153-168.
[12] Paul Russell, “Linux IPCHAINS-HOWTO,” March 1999. Available

at: http://www.rustcorp.com/linux/ipchains/HOWTO.html
[13] Mark Yarvis, Peter Reiher, and Gerald J. Popek, “Conductor: A

Framework for Distributed Adaptation,” Proceedings of the Seventh
Workshop on Hot Topics in Operating Systems, Rio Rico, AZ, March
1999.

[14] Mark Yarvis, An-I A. Wang, Alexey Rudenko, Peter Reiher, and Ger-
ald J. Popek, “Conductor: Distributed Adaptation for Complex Net-
works,” UCLA Tech Report, CSD-TR-990042, 1999. Available at:
http://fmg-www.cs.ucla.edu/Conductor/CSD-TR-990042.ps.

