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Abstract—Varying and suboptimal network conditions re-
quire applications to degrade gracefully to meet a user’s needs.
Existing technologies usually overcome a single network defi-
ciency with one adaptation, often near the last mile of the net-
work. These solutions are insufficient in the increasingly het-
erogeneous Internet, where applications will benefit from coor-
dinated distributed adaptation at various points in the network.
We describe the challenges of distributed adaptation and the
Conductor adaptation service that meets these challenges, pro-
viding potentially dramatic improvements.

1 Introduction

Advancing network technologies increase the intercon-
nectivity and heterogeneity of computer networks. The aver-
age bandwidth between any two points in the Internet is go-
ing up, but so is the range of experienced bandwidth. Appli-
cations that cannot adapt to varying network conditions will
become decreasingly useful, particularly to mobile users.
One solution is to deploy a distributed adaptive service into
nodes in the network. These nodes can provide processing
and/or storage capabilities and operate on higher protocol
stack layers.

Historically, transport (and higher) protocol layers have
been provided only at endpoints. Building knowledge of
higher-layer protocols into routers has several disadvantages,
including performance and reliability. While this paper does
not prove that the advantages outweigh the disadvantages, it
provides evidence from two perspectives to support raising
the level of network services. First, we explore common
cases in which application-level adaptation within the net-
work helps applications adapt their services under suboptimal
conditions. Second, we describe technologies that allow a
network operating system to provide sensible and reliable
adaptive services.

Successfully enabling distributed adaptation requires sev-
eral important services. If adaptations may add, delete, or
modify data stream elements, the typical model of exactly-
once delivery is no longer suitable. A new model for reliable
delivery of adapted data must be developed. In addition, a
security model is required that balances the needs for secrecy
and adaptation. These and other challenges must be met.
Doing so may require changes to the operating system or
support from operating system services. Further, many of the
problems encountered are similar to certain problems in dis-
tributed operating systems.
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We have constructed an adaptation framework called Con-
ductor to explore distributed adaptation. Conductor provides
an application-transparent adaptation service within the net-
work. Adaptor code modules, dynamically deployed as
needed at Conductor-enabled points within the network,
adapt data streams as required. Conductor allows multiple
coordinated adaptations to be deployed without compromis-
ing reliability. Conductor’s techniques enable applications to
be adaptable in heterogeneous networks.

2 Distributed Adaptation

While the Internet’s overall capacity is increasing, high
performance networking is far from ubiquitous. Congestion,
failures, mobility, and the “last mile” create orders of magni-
tude differences in bandwidth, latency, jitter, security, cost,
and reliability. At the same time, general-purpose software,
multimedia applications, thin-client software, PDAs, and
other Internet appliances increasingly demand connectivity.

Internet applications typically require network characteris-
tics to meet a minimum threshold for adequate performance.
When not met, an application's cost in time, security, or
money may exceed its value, perhaps providing no useful
service. The service provided by an application should de-
grade gracefully to match the network’s capabilities.

Graceful degradation can be provided outside an applica-
tion by adapting its communication stream. Common exam-
ples are link-level compression in PPP and ssh tunneling to
add encryption. Proxy nodes within the network can perform
many services. Application-specific adaptations, such as
dynamically reducing the color depth or resolution of images,
can greatly reduce costs with an acceptable loss of quality
[6]. Performing such adaptations externally to applications
frees developers from having to predict all possible combina-
tions of network conditions an application will face and may
allow the user to choose from a wider range of adaptations.

Research on adaptation within a network has primarily fo-
cused on individual adaptations for individual problems.
Placing proxy nodes adjacent to a last-mile link, for instance,
allows adaptive performance over that link. Several simulta-
neous link deficiencies, however, require careful coordination
between multiple adaptations. For example, securing a con-
nection by tunneling through ssh across a modem link renders
PPP compression ineffective.

Heterogeneous networks require system support for dis-
tributed adaptation—multiple adaptations, potentially dis-
tributed within the network, that are carefully coordinated for



proper end-to-end adaptation. The following sections de-
scribe three case studies that require distributed adaptation.
2.1  Secure Communication From a Home LAN

The home of the near future may contain several Internet-
capable devices (multiple workstations, TV, radio, refrigera-
tor, etc.), possibly connected by a wireless LAN for internal
communication with a broadband router providing Internet
access for all devices on the LAN (Figure 1).
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Figure 1: A home network supporting multiple Internet clients.
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Web access to a user’s bank account in this environment
will pose several concerns: the insecure Internet and wireless
LAN and insufficient bandwidth in the shared DSL link.
Data could be adapted at several points: the client, the server,
the DSL router, and a “proxy”” node provided by the ISP.

A client can improve the performance of web fetches (sev-
eral of which typically occur at once) by prioritizing data
transfer across the DSL link. Priority might be established by
size, allowing smaller images and text pages to be received
first and preventing slowdowns caused by large software and
document downloads. Or priority might be established by
type; text data might have priority over images. Prioritization
should be deployed at the ISP proxy, allowing HTTP sessions
with various servers to be prioritized together.

All of the data from the bank’s web pages should be en-
crypted, reducing the chance of sensitive information being
transmitted in the clear. A software download, which may be
occurring simultaneously, might also require encryption.
End-to-end encryption of the data stream, while simple,
would obscure the data, preventing prioritization of the inter-
active traffic over the software download at the ISP proxy.

Two solutions are possible. An end-to-end encryption ad-
aptation that tags each session with its length (or type) could
replace a generic encryption adaptor. Or encryption could be
performed twice, once server-to-proxy and again proxy-to-
client, with prioritization based on the temporarily decrypted
data. In each solution, available bandwidth has changed the
manner in which encryption should be applied.

2.2 Power Savings for Mobile Users

The network in Figure 1 is similar to a mobile-deployed
wireless network that might be used by an emergency rescue
team or an archeology team in the field. Simply replace the
DSL link with a point-to-point wireless link and the DSL
router with a wireless access point. While the bandwidth of

the Internet connection will still be low (perhaps even lower),
and security may still be of concern, a new concern is the
limited operating power of the devices on the wireless LAN.

If a client on the wireless LAN performs a high-latency da-
tabase query, it will expend power listening for an asynchro-
nous response. A useful adaptation would allow the client to
power down its wireless interface while the query is out-
standing. For each request, the client could compute the ex-
pected time for completion and notify the access router that it
will be offline for that length of time. The access router
would cache any results that are returned in the meantime,
transmitting them after the specified time has expired.

A compressor deployed either at the server or the ISP’s
proxy can reduce the transfer time across the low-bandwidth
link. Decompression is best done at the mobile access point,
reducing the workload on the power-limited mobile device.

2.3 A Multimedia Session Between Wireless Users

Mobile users often have poor last-mile links. Increasingly,
mobile users will want to communicate with each other, lead-
ing to multiple poor links. For instance, a mobile-to-mobile
video-conference has two low-quality last-mile links.

Consider two mobile users using WaveLLAN packet radios
that provide around 6 Mb/s of bandwidth (Figure 2). The
wireless link has insufficient bandwidth to carry the video
transmission from Client 1 to Client 2. The data could be
compressed before transmission over the WaveL AN links (at
Client 1 and Proxy 2) and decompressed upon receipt (at
Proxy 1 and Client 2). To avoid inefficient repeated com-
pression and decompression, we can adapt from end to end,
compressing at Client 1 and decompressing at Client 2.
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Figure 2: Two mobile users with WaveLAN connectivity.

If Client 2 is, instead, connected via a Metricom Rico-
chet-2 wireless modem [19], with 128 Kb/s bandwidth, com-
pression is insufficient (Figure 3). Instead, a significant
number of frames must be dropped, preferably at Client 1.
The resulting stream will be small enough to allow transmis-
sion over both links without requiring further compression.

The correct adaptation changes again if a video clip is
transmitted instead. Perhaps a cache is present somewhere in
the Internet that could service other requests for the same clip
without requiring further data transmission over Client 1's
WaveLAN network. If the previous adaptation scheme were
used, the cache would receive a reduced-fidelity version of
the video, which might not meet the needs of other clients. In
this case, it may be preferable to perform lossless compres-
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Figure 3: One mobile user connected by WaveLAN and one connected
by Ricochet.

sion between Client 1 and Proxy 1 and drop frames at Proxy
2, delivering the full-fidelity data stream to the cache.

2.4 Discussion of Case Studies

The above case studies are real-world situations in which
multiple network deficiencies exist at various points in the
network. These cases depict two important characteristics:

e Adaptation may be required at several points in the net-
work. In the web prioritization case, prioritization must oc-
cur at the ISP proxy (to prioritize all streams crossing the
DSL link), while encryption is required at the client, server,
and perhaps at an intermediate point. In the mobile power-
saving example, result caching must occur at the wireless
access point, control of the mobile device’s wireless interface
must occur on that device, and compression must occur at or
before the edge of the high-bandwidth network.

e Adaptations to handle independent network problems
may require coordination. In the web prioritization example,
application-level end-to-end encryption precludes prioritiza-
tion. In the user-to-user multimedia example, independent
adaptation can lead to redundant and wasteful operations.

These examples are not isolated. Wireless home networks,
personal-area networks (e.g., Bluetooth [10]), and multi-hop
wireless networks [19] are extending the last mile. At the
other extreme, even the most robust and powerful servers
have succumbed to congestion, distributed denial-of-service
attacks, and unexpected load peaks (e.g., the "Slashdot effect”
[1]). Heterogeneity constrains how adaptations can be de-
ployed. If a client adjacent to a low bandwidth link needs
prefetching to handle the high server latency, prefetching
from the client would overload the low bandwidth link. On
the other hand, while an end-to-end compression adaptation
might handle several bandwidth constraints, a given server
may have insufficient CPU cycles to provide such an adapta-
tion to all clients, requiring other possible points of adapta-
tion to balance the load.

These cases demonstrate that end-to-end network hetero-
geneity may require a coordinated set of adaptations at multi-
ple points in the network. Such a service requires more com-
plexity than independent application-, link-, or proxy-level
adaptation.

3 Providing Distributed Adaptation

Applications communicating across heterogeneous net-
works, including the Internet, may require multiple coordi-

nated and potentially distributed adaptations, something not
well supported by existing adaptation frameworks. We have
developed a systems service called Conductor to explore the
challenges and rewards of distributed adaptation.

3.1  The Conductor Approach

Like several existing systems, Conductor enables adapta-
tion of reliable connection-oriented streams from within the
network. However, Conductor allows adaptation to be dis-
tributed into the network dynamically, applying several coor-
dinated adaptations to a single connection at various points
along that connection path.

Conductor is incrementally deployable. It can be deployed
on a subset of nodes within the network—ideally at clients,
servers, and gateways between networks of differing charac-
teristics. The additional resources required by adaptation
(notably processing and storage) can be deployed as needed.
The more resources present, the greater the service provided.
Conductor-enabled nodes might be provided by an organiza-
tion’s network infrastructure, by an ISP (for use by subscrib-
ers), or by a third party on a fee-for-service basis [24].

Conductor nodes support the deployment of adaptor code
modules that implement particular adaptations. These adap-
tors operate on application-level protocols, arbitrarily modi-
fying the data stream. Conductor includes a planning infra-
structure that selects the appropriate adaptors for the given
conditions. The planning process is user-controllable via a
set of user preferences.

Conductor ensures that the data stream delivered to the
destination application is in a usable form, allowing applica-
tion-transparent adaptation. However, the data delivered may
be different from the data transmitted. Conductor is applica-
tion-transparent, but not user-transparent. For instance, an
adaptor may reduce the bandwidth requirement of a video
transmission by dropping some frames, effectively reducing
the frame rate. If necessary, another adaptor can restore the
original frame rate before delivery by duplicating frames,
filling the gaps. The application will accept the video stream
without noticing any changes, but the user will see a qualita-
tive difference. Since Conductor is fundamentally applica-
tion-transparent, it can support both legacy and closed-source
applications. However, an API could also be added, allowing
aware applications to provide additional input and control
over planning and adaptation.

3.2 Key Challenges

Conductor’s approach to adaptation introduces several key
challenges, including resilience to failures, the ability to
choose an appropriate set of adaptors, and protection from
attack and misuse.

The new components that distributed adaptation introduces
into the network must not reduce the reliability of data con-
nections. Node, link, and adaptor failures should not cause
connection failures. Today, reliability is typically provided
end-to-end and a given connection’s reliability does not de-
pend on any particular nodes within the network. This reli-



ability model is insufficient to support distributed adaptation.
First, distributed adaptation introduces unique and potentially
stateful nodes in the middle of the network upon which a
connection may depend. Second, adaptation may modify the
data stream in transit, potentially confusing an end-to-end
reliability service. Third, this reliability model offers no pro-
tection against changes in adaptation, particularly unexpected
changes, which must not result in the delivery of unintelligi-
ble data to the user. For example, an adaptation that reduces
bandwidth requirements by dropping video frames provides
intentional data loss, which should not be considered a fail-
ure. Also, adaptor failure should not break the data semantics
by delivering half of a frame. Conductor requires a new
model of reliability that is compatible with adaptation

For each connection that may need adaptation, a distrib-
uted adaptation service must determine which, if any, adap-
tors are required and where to deploy them. Planning should
be automatic, requiring as little user and application partici-
pation as possible. If data flows before adaptors are de-
ployed, resources could be wasted on low-priority data, or
sensitive data could be transmitted unprotected over insecure
links. So planning must be quick. This point favors decen-
tralized planning, in which each node locally selects and de-
ploys the adaptors it believes are necessary. But the case
studies in Section 2 show that the right choice of adaptation
for one link may be influenced by other links and other adap-
tors desired for the connection. A global view, and therefore
inter-node communication, is required to make the correct
global decisions. Since some links may be slow, we must
minimize the communication cost of obtaining a global view.
However, mistakes in planning are expensive, so Conductor
must balance plan quality against startup latency.

Since end-to-end encryption is incompatible with many
desirable adaptations, and link-level encryption assumes that
all routers are trusted, Conductor must provide an intermedi-
ate approach that adapts only at trusted nodes. The planning
process itself must be protected from subversion. Input to the
planning process must be limited to trusted nodes, and adap-
tor deployment must be triggered only by an authentic plan.
Finally, each adapting host must be protected from the adap-
tations it allows, including overuse or misuse of resources.

3.3  Potential Pitfalls of Distributed Adaptation

Historically, packet processing at network routers has been
limited to network-level protocols.  Usually, higher-level
functionality is best provided as close to the application end-
points as possible [25], though special systems with visibility
into higher-level protocols have been constructed, both for
adaptive purposes [3] and in firewalls for security. The ad-
vantages of application-level adaptation must be balanced
against packet overhead and transparency.

Building application-level adaptation into network nodes
increases packet processing costs. Fortunately, adaptation is
not required at all network nodes, nor by all packets. For
packets requiring adaptation, the processing costs should be
offset by the benefits obtained. For instance, the time it takes

to reduce the color depth of a video frame is made up by
lower transmission cost. Many dynamic application-level
adaptations are feasible today [6]. Since processing speed is
improving faster than network speed, the set of feasible adap-
tations is growing. Also, specialized hardware may enable
efficient active processing at network nodes [11].

Adaptation removes the transparency of the transmission
channel. Unaware adaptation might not always be appropri-
ate. In the Conductor model, the user is in control of adapta-
tion and can therefore select the desired application behavior.

4  The Conductor Architecture

Conductor is composed of two main elements: adaptors
and the framework for deploying those adaptors (Figure 4).
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Figure 4: Conductor intercepts client-server communication channels and
deploys distributed adaptors.

Conductor adaptors are self-contained pieces of Java code.
Many adaptors are type-specific, expecting a specific proto-
col or data type. Most adaptors are paired. A pair of adap-
tors typically converts from an input protocol to a protocol
better suited for transmission over a network with particular
characteristics, and back to the original protocol. Adaptors
can arbitrarily modify the data stream, allowing any desired
type of adaptation. Adaptors can be lossy; the data delivered
to the application may be different from the data transmitted.

Newly developed adaptors can be added to the available
suite as new protocols, new network technologies, and new
user requirements are developed. Adaptors are dynamically
deployed for new connections as the need arises, limited only
by the availability of node resources. Adaptors can be com-
posed and combined sequentially with other adaptors, limited
only by the input and output protocols expected by each
adaptor. Adaptors are self-descriptive, specifying the re-
quired input protocol, the resulting output protocol, and the
resources required from the node.

The Conductor framework is primarily a user space Java
program that provides a runtime environment for adaptors
(Figure 5). This runtime environment intercepts connections
from application clients to application servers, forming a data
path through Conductor-enabled nodes between the client and
server, and deploying adaptors at appropriate nodes along
that path. The protocols used by Conductor to enable distrib-
uted adaptation are described in the following sections.
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Figure 5: The architecture of a Conductor-enabled node.

4.1  Stream Interception and Handling

Before it can adapt a data stream, Conductor must inter-
cept that stream and determine if the data is a type that Con-
ductor can adapt. If so, Conductor must find Conductor-
enabled nodes between the client and the server, and provide
each with sustained access to the data stream.

When an application starts a new data connection on a
Conductor node, Conductor’s interception layer traps the
opening of the socket, connecting it to Conductor instead of
the opposite endpoint. Since Conductor is connection-
oriented, only TCP connections are intercepted. Under the
Linux 2.2 kernel, the interception layer is a small kernel
modification that traps connections destined for particular
remote ports specified by Conductor. Under Linux 2.4 and
modern FreeBSD kernels, the built-in firewall can perform
this function. In other systems, extensibility mechanisms can
allow trapping of data flows without kernel modifications
[18]. If the client node is not Conductor-enabled, Conductor
could also trap connections from a node within the network
using Linux’s transparent proxy facility [29].

To properly adapt a data stream, Conductor must correctly
identify protocols and data types. Such identification is pos-
sible because client and server applications must already pro-
vide sufficient clues to communicate with one another. For
example, a well-known port number is used to contact a par-
ticular service. Some protocols, like HT'TP, may use several
port numbers or may have several protocol versions. In these
cases, an initial handshake that identifies a protocol version
or enabled options is common. The type of data being trans-
mitted via a transport protocol like FTP, SMTP, or HTTP is
frequently identified explicitly (using the “Content-Type:”
header in HT'TP), but magic numbers can also be used. Since
Conductor only intercepts those protocols that it knows can
be effectively adapted, we reduce the overhead for non-
adapted streams. Currently, interception is based entirely on
remote port number.

Once a connection is intercepted, Conductor can identify
(from the interception layer or transparent proxy facility) the
connection’s original destination. The intercepting node must
identify other Conductor-enabled nodes along the path from

the client to the server. Currently, Conductor-enabled nodes
are identified by sending probe packets (which follow the
typical network route) toward the server. Conductor-enabled
nodes along this route capture this packet and participate in
planning for this connection. Once the last node is reached, a
connection is created to the intended server, and planning
occurs to select a set of adaptation nodes and a set of adaptors
to deploy. Before data flows, TCP connections are created
between adjacent pairs of Conductor nodes at which adapta-
tion is desired. The result is an end-to-end path made up of
multiple split-TCP connections.

4.2 Automated Planning

Conductor includes a planning facility to automatically se-
lect an appropriate set of adaptors and decide where to deploy
them. Automatic planning is essential because both the user
and the application writer typically lack the networking ex-
pertise and forethought required to understand either the
characteristics and requirements of the network or the capa-
bility and interoperability of available adaptors. Planning
occurs on a per-connection basis and consists of three main
elements: information gathering, plan formulation, and adap-
tor deployment.

The planning process considers user preferences, node re-
sources, and link characteristics. User preferences describe
the resources (time, money, battery power, etc.) and the
qualities of the data most important to the user’s current task.
For instance, when downloading a map over a limited band-
width link, an impatient user may prefer a high-resolution
black-and-white image, allowing street names to be read, or
he may prefer a low-resolution full-color image, allowing the
parks to be easily located. Node resources include the set of
available adaptors and the resources available to those adap-
tors, such as CPU cycles and storage space. Nodes may also
wish to express security constraints that would prevent them
from executing particular adaptors. Link characteristics in-
clude bandwidth, latency, security level, jitter, and reliability.

Determining the inputs to planning requires some facility
for environmental monitoring at each node. Conductor pro-
vides a pluggable architecture for monitoring local node and
link conditions. An environmental monitor should allow cur-
rent and historical conditions to be queried and should notify
Conductor of drastic changes that might require a revised
plan. Currently, Conductor uses a very simple mechanism
for measuring node resources and link characteristics. Even-
tually, Conductor could leverage more sophisticated tech-
nologies developed by other researchers [26] [34].

Conductor balances global optimality against speed by us-
ing a single-round-trip centralized planning architecture.
When planning begins, all nodes along the data path forward
their local planning information to a single planner node
(Figure 6). Currently, this node is the Conductor node closest
to the server. The planner node uses this information to for-
mulate a plan, which is transmitted from the planner node
toward the client endpoint, passing through each Conductor-
enabled node along the way. Once the adaptors are deployed
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Figure 6: Conductor’s planning protocol in action.

on a given node, data may flow in that direction. As a result,
once the plan reaches the client node, the first bytes of appli-
cation data from the server will reach the client. The plan
now flows in reverse, deploying adaptors for the other direc-
tion of flow. Once the plan reaches the server node, the first
bytes of application data from the client will reach the server.
Thus, one extra round trip has been added before application
data begins to flow in both directions.

The Conductor architecture can plug in many plan formu-
lation algorithms; the current algorithm is template-based. A
template is a pre-formulated description of a hypothetical
deployment of adaptors. Templates are frequently (but not
always) protocol-specific and describe a hypothetical set of
nodes, the adaptors to be deployed on those nodes, the re-
sources required on each node, the effect of adaptation on the
links between adjacent nodes, and any qualitative change in
the delivered data. For instance, a template might specify
that using a frame-dropping adaptor on one node and a frame-
duplicating adaptor on another doubles the effective band-
width of the links between them, but reduces video quality.
Since the number of Conductor-enabled nodes in the data
path is typically greater than the number of nodes specified in
the template, a given template can be applied to a network in
many ways (by matching each template node to each real
node). The best application of all available templates is cho-
sen based on the effective network characteristics desired by
the user and the preferred resulting data characteristics.

Planning occurs at connection start-up time based on the
current network conditions. Dynamic network conditions
may lead to replanning. Adapting to minor variations in
bandwidth, delay, etc., is the job of the individual adaptors.
If, however, the variations are too large for the adaptors to
handle, or there is an actual failure, one Conductor node will
signal to the others, initiating a distributed reevaluation of the
deployed adaptors. Conductor may try to find a new data
path or alter the set of deployed adaptors on the old path.

4.3 Reliability

TCP provides a convenient model for application writers:
exactly-once, in-order delivery of a byte stream. However,
this model is incompatible with adaptation. Since adaptation
seeks to deliver some version of the transmitted data that is

cost-effective, the bytes delivered may bear no resemblance
to the bytes transmitted. To maintain the semantics expected
by the user while enabling adaptation, Conductor provides a
new model of reliability that instead provides exactly-once,
in-order delivery of adapted data.

4.3.1

Three approaches to reliability have been incorporated into
previous adaptive services. The first is to restrict the types of
operations that can be performed on the data stream. The
Snoop Protocol [3] avoids violating TCP semantics, while
Protocol Boosters [5] allows only additive operations, trans-
mitting the additional information independently from TCP
streams. In either case, adaptation failure only reduces or
removes the adaptation benefits. This approach cannot sup-
port arbitrary adaptations, however.

A second approach is to increase the reliability of adapting
nodes. The Berkeley Proxy [7] allows arbitrary adaptations
by splitting the TCP channel into two, from the server to a
proxy and from the proxy to the client. The potential for fail-
ure is mitigated through the use of redundant hardware and
software in the proxy node. While this approach works for a
single proxy near the last mile, deploying redundant hardware
throughout the network is not feasible. Also, this approach
does not address software failures in adaptation modules.

A third approach is to bypass the end-to-end reliability
mechanism (using split-TCP or by adapting TCP itself [15])
and accept some failures. This approach is particularly ap-
pealing when only one path exists from the client to the rest
of the network, as is commonly the case for last-mile adapta-
tion. If the point of adaptation is along this path, then failure
of an adapting node implies packets cannot be forwarded.
Since some degree of failure would occur anyway, the pres-
ence of adaptation does not decrease the level of reliability.
However, this argument does not address the issue of adaptor
failure or more transient node failures. Also, when adapta-
tion is distributed, alternative routes may very well exist, al-
lowing data transmission to continue despite node failures.

4.3.2 A New Model for Reliability

Most reliability models assume that data is immutable dur-
ing transmission. Each byte transmitted is received, un-
changed, at the destination. The measure of reliability in
such a system is exactly-once, in-order delivery of bytes.
This type of reliability can be guaranteed by the endpoints,
the failure of which will cause the connection to fail.

Adaptation violates this model’s assumption of data immu-
tability. When a failure occurs, the system must ensure that
the resulting adapted data stream conforms to the protocol
expected by the application. Maintaining data integrity is not
simple, however. The data already output by an adaptor may
be incompatible with a switch to the original stream. For in-
stance, consider an adaptor that adds a lowsrc attribute to an
image tag in an HTML data stream (Figure 7). If a failure
occurs in the middle of the tag, a byte-count retransmission

Previously Proposed Approaches
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Figure 7: Failure recovery using a byte-count scheme — (a) data arrives
at adaptor, (b) failure and retransmission occur, (c) retransmission pro-
duces an undesirable result.

scheme may result in data that is neither the adapted data nor
the original data, and may not even be syntactically correct.

Even if an adaptor fails at an appropriate point in the
stream, retransmission of lost data is still difficult. For in-
stance, if an adaptor converts color video frames into black-
and-white, the adapted frames will constitute a shorter byte
stream. If a failure occurs immediately after the last byte of
frame 100, a simple byte-count retransmission scheme might
begin retransmission after frame 50, duplicating data the user
has already received. The system must correlate the data
received downstream with the data transmitted to determine
an appropriate point of retransmission. If this correlation is
lost with the adaptor, transmission cannot continue.

We propose that in the face of adaptation, a reliable system
should preserve two properties of a data stream:

1. Each semantically meaningful element in the transmit-
ted data stream is delivered exactly once and in order.

2. Delivered data conforms to the expected protocol.

The first property requires that the data stream be divided
into segments that are semantically meaningful to the proto-
col being transmitted before adaptation can occur. For in-
stance, a video stream might be divided into frames, or an
HTML stream into tags and text. Each segment must be de-
livered exactly once, in some acceptable form (original,
adapted, or deleted entirely) in the proper order.

The second property restricts the content of the segments
at the time of final delivery. If halving the frame rate is
acceptable to the application, then delivering empty segments
in the place of every other frame might be allowed.
Segments must be chosen so that the failure of any adaptor
will not result in delivery of data that confuses the destination
application, thereby ensuring that some viable version of the
data produced at the source will arrive at the destination.

4.3.3  Attaining Reliability

Conductor uses a TCP connection between adjacent Con-
ductor nodes along the data path, providing reliable delivery
between adaptor modules on different nodes. Since adapta-
tions occur only at Conductor nodes, TCP’s model works
well between them. Unless an adaptor, a link, or a node fails,
end-to-end transmission of adapted data proceeds reliably and
in order. If one of these events occurs, Conductor’s data re-
covery mechanism protects against data loss. Once the data

path is restored, Conductor must determine which data has
already been received downstream and request retransmission
from this point. As previously described, this mechanism
must be compatible with adaptation, providing exactly-once
delivery of semantic meaning.

4.3.4  Semantic Segmentation

Semantic segmentation allows data recovery despite the
presence of adaptation. A semantic segment is a dynamically
adjustable unit of retransmission for data recovery. Semantic
segments also preserve the correspondence between an adap-
tor’s input and output data streams. Adaptors, which have an
understanding of the format of the data stream and the opera-
tions they will perform on that stream, have a responsibility
to maintain appropriate segmentation.

The initial data stream consists of bytes being transmitted
by the application and intercepted by a Conductor module on
the source node. Conductor considers these bytes to be logi-
cally divided into one-byte segments, which are numbered
sequentially. It is not necessary, at this stage, to track seg-
ment boundaries or segment numbers. For efficiency, the
bytes can be transmitted with very little overhead; simply
counting the bytes can identify individual one-byte segments.

Adaptors form larger segments by combining smaller seg-
ments. When segments are combined, the new segment re-
ceives the segment ID of the last combined segment. When
operating on the data stream, adaptors must perform segment
combination in two situations:

1. When modifying a semantic element in the data stream

that crosses a segment boundary

2. When adaptor failure between segments could other-

wise violate the expected protocol

Consider an adaptor that compresses video frames. Before
compressing a frame, the segments making up that frame are
combined into one segment. If the stream consisted of 100-
byte frames, each frame would initially be represented in the
stream as 100 1-byte segments. Before reducing each frame
to 50 bytes, the adaptor would combine these 100 segments.
The first 100-byte frame would be in segment 100, and the
second would be in segment 200. Each segment would then
be adapted, producing a 50-byte segment numbered 100 and
another numbered 200. Each resulting 50-byte segment con-
tains the same semantic content as the 100-byte segment and
the 100 1-byte segments; only the format has changed.

Subsequent adaptors may further combine segments, and
segments may grow to arbitrary length. In general, to support
lossy adaptation, combined segments can never be taken
apart. At the destination node, the Conductor module simply
removes any segment markers and delivers the resulting data
to the application (with one restriction, described below).

4.3.5 The Recovery Protocol

Conductor uses the semantic segment as the unit of re-
transmission. To allow retransmission, data transmitted from
each endpoint is cached at the Conductor node closest to the
source. If the source node is Conductor-enabled, we depend



on it not to fail, just as TCP does. To improve the speed of
recovery, caching can also be added at other points along the
data stream.

Recovery is initiated downstream of the failure. Any seg-
ment that has been partially received is cancelled and dis-
carded. Note that if the application is unaware of the adapta-
tion system, the possibility of cancellation of partial segments
requires that the adaptation system not deliver any segment to
the application until that segment is complete. Once cancel-
lation is complete, the ID of the previous completely received
segment will be known.

A retransmission request containing the ID of the last seg-
ment received travels upstream until it can be serviced, either
by a cache or by an adaptor (perhaps from an internal cache).
Nodes that cannot satisfy the retransmission request will for-
ward the request upstream and discard any subsequent seg-
ments until retransmission begins, preserving in-order deliv-
ery and ensuring that any resulting change in adaptation is
observed in all subsequent data. The mandatory cache at the
source node provides a fallback source if retransmission does
not occur prior to this point. Once a source for the requested
segment is found, transmission begins with that segment and
proceeds in order with the following segments. Note that the
possibility of retransmission requires adaptors to accept a
rollback to a previous point in the data stream, or fail. Since
semantic segmentation ensures semantic equivalency of data,
retransmission can occur with any version of the desired
segment, including the original version. The data can then be
re-adapted in the same way, or perhaps differently.

Continuing the video example from the previous section,
consider the case where the first frame (in segment 100) and
part of the second frame (in segment 200) are received at a
point immediately downstream from the decompression adap-
tor (Figure 8). If both the compression and decompression
adaptors fail, Conductor will discard the part of segment 200
that was partially received downstream and request retrans-
mission starting at segment 101. Retransmission will thus
begin with the second frame, as desired. If only one of the
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Figure 8: Recovery from the failure of an adaptor that compresses
frames in a video stream.

two adaptors fail, Conductor will automatically remove the
other to preserve adaptation symmetry.

This scheme provides failure-based recovery. Like any
system based on negative acknowledgements, Conductor also
needs to limit cache growth and allow adaptors to free any
accumulated internal state. For this reason, the destination
node generates acknowledgements whenever a segment is
completely received. Acknowledgements are cumulative,
allowing all composed segments to be acknowledged when a
segment is finally received at the destination.

More details of Conductor’s reliability mechanisms, in-
cluding the ability to restore proper pairing of adaptors after a
failure, are available in [32].

4.4  Adaptor API

An adaptor operates on one direction of data flow. Each
adaptor has its own thread of execution, a window into the
data stream, and access to an inter-adaptor communication
facility.

Each adaptor accesses the data stream through a window,
which defines a portion of the data stream to which it has
exclusive access. The flow of data is controlled by moving
the window boundaries along the stream. An adaptor can
read new data into the window using an expand () opera-
tion. The expand () operation blocks until the requested
data is available. An adaptor can write data out of the win-
dow using the contract () operation.

An adaptor is also able to view and modify the data stream
by other window operations, controlling segmentation in the
process. An adaptor can freely read the bytes within the win-
dow. Segmentation will not be affected. To modify the data
stream, an adaptor can use the replace () operation, which
replaces a portion of the data in the window with a new set of
bytes. The data being replaced may belong to several adja-
cent segments, which will be automatically combined into
one segment and labeled appropriately. Once contained
within a single segment, the old data can be removed and
replaced with the new data.

A malfunctioning adaptor can provide incorrect data to the
user, but it cannot violate the rules of segmentation. How-
ever, an adaptor must ensure that segments are semantically
meaningful and delineates appropriate places for adaptation
to cease, or a failure may result in a meaningless data stream.

Additional API elements allow adaptors to leverage exist-
ing Java code. An adaptor can read a byte stream from the
window using an InputStream interface and write a byte
stream to the window using an OuputStream interface.
Existing components that implement standard algorithms,
such as encryption or compression, can alter the stream using
this standard API. Since the operations performed in such a
filter are hidden from Conductor, however, the resulting
stream will be one large semantic segment.

Finally, adaptors have access to inter-adaptor communica-
tion facilities, one for communication between adaptors oper-
ating on the same stream, the other for communication be-
tween any adaptors on the same node.



4.5  Securing Distributed Adaptation

Secrecy and integrity of transmitted data is of concern in
any distributed system. Providing distributed adaptation in-
troduces two additional concerns. The first concern, protect-
ing nodes from malicious adaptor code, is well known and
can be addressed by techniques such as sandboxing, signed
code, or the results of other ongoing research [2] [8]. Con-
ductor's security design instead focuses on the relatively new
issue of protecting the user from undesired adaptation.

Conductor provides a security architecture that, for a given
connection, discovers a set of nodes that can be trusted, en-
sures that only those nodes participate in the selection of ad-
aptations, and (when necessary) provides encryption over the
"virtual links" between trusted nodes.

4.5.1

Distributed adaptation can require one or more nodes in
the network to act on the user's behalf. Conductor must de-
termine which nodes the user trusts. A user can have differ-
ent levels of trust toward a given network node. One node
might be trusted to adapt the plaintext of a data stream. An-
other node might only be trusted to adapt encrypted data. A
third node may not be trusted at all.

We assume that the endpoints of each connection are fully
trusted by the user (to access a given stream), as is typically
the case. When this is not the case, the application can em-
ploy end-to-end encryption. One or both of the trusted end-
points must determine which other nodes can also be trusted.
Establishing trust requires two elements: an authentication
mechanism to establish the identity of participating nodes,
and a model for determining which nodes are trustworthy.

Conductor currently uses a static trust model. The user can
specify a list of trustworthy nodes or networks. Future ver-
sions of Conductor may include more flexible and dynamic
models of trust, perhaps leveraging an automated trust man-
agement system such as Keynote [4]. Conductor selects the
set of trusted nodes on the server endpoint as part of the plan-
ning process. While the client endpoint could also partici-
pate, performing selection on the server reduces the number
of round trips required.

Establishing Trust

4.5.2  Authentication

Authentication prevents an untrusted node from masquer-
ading as a trusted one. Since there is no ubiquitous Internet
infrastructure for authentication, and because different appli-
cations need different strengths of authentication, a pluggable
authentication architecture is needed, allowing the user to
choose a suitable authentication mechanism for each stream.

Conductor currently provides several authentication mod-
ules, which assume different amounts of network infrastruc-
ture and provide different levels of security. A null-
authentication module is used when no authentication, and
therefore no security, is required. The free module assumes
that a hierarchy of certificate authorities (CAs) provides au-
thenticatable public keys. A third module, dubbed chain, is
also based on public keys, but assumes that administrative

A CA and its
coverage

Figure 9: A network with loosely related certificate authorities (suitable
for forming a chain of trust).

domains have independent, rather than hierarchical, CAs
(Figure 9). Assuming that each local CA can certify some of
the "neighbor" domain CAs (and perhaps some distant nodes
as well), then a chain of trust may be formed.

The public and private keys managed in the chain and tree
modules will be used to sign and encrypt planning messages
(as described in the following sections). Conductor allows
other authentication modules to be constructed.

Figure 10 depicts the secured planning protocol. Authenti-
cation begins at connection startup, before planning begins.
The client node chooses an authentication scheme and sends
a message from node to node to the server.
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Figure 10: Conductor’s secured planning protocol.

Since the server node determines which nodes will be
trusted, each node must authenticate itself to the server node.
To this end, each node sends an authentication message,
which is carried from node to node, to the server. The con-
tents of this message depend on the type of authentication
requested. For instance, if the tree module is used, one public
key certificate from each level of the hierarchy is included in
each authentication message. Given the public key of the
root server, which is known by all nodes, an authenticated
public key for the node in question can be obtained by the
planner.

Independent authentication between each node and the
server is insufficient, unlike point-to-point authentication
services like IPsec [14]. The chain module, for example, will
create an authentication message containing a certificate for



the local node from the local CA. However, it will also ex-
amine all authentication messages received, before forward-
ing them toward the server. The chain module will attempt to
obtain certificates for each node and each CA mentioned in
the message from its local CA. The authentication message
received by the server may include a chain of certificates
starting with the certificate for the public key of the node in
question and ending with a certificate signed by the local CA.

Some authentication mechanisms will also require the
server to provide authenticating information to the client. For
instance, in both of the public key authentication modules,
each node will also need to obtain the public key of the
server. In this case, a single authentication message is also
sent in the reverse direction, from the server through each
node to the client.

Since multiple authentication mechanisms are supported,
Conductor must ensure that each node uses the same mecha-
nism to authenticate other nodes. The resulting chicken-and-
egg problem of what mechanism to use to establish the com-
mon authentication mechanism must also be solved. To this
end, a message identifying the type of authentication actually
used to authenticate nodes is signed by the server and sent to
the client. If the method selected by the client was not used
by the planner, the client will kill the connection. Note that
in this and all other signed messages, a globally unique con-
nection identifier is also signed to prevent replay attacks.

4.5.3  Protecting Adaptor Selection

Conductor uses information such as link characteristics,
user preferences, and available node resources to decide
which adaptations to deploy and where to deploy them. At-
tackers could force unnecessary or even undesirable adapta-
tions by falsifying information about conditions or illicitly
altering the resulting plan. Information gathering, planning,
and plan distribution must therefore be protected.

Plans are formulated on the server node, which is trusted.
However, the input to that process, the planning information
from each node, must be shown to be authentic and from a
trusted node before it can be used as an input to the plan.

The authentication information received prior to planning
can be leveraged to form a verifiable digital signature for
each planning information message. For example, public key
encryption can be used in the typical manner. Each node
would sign its planning information with its private key be-
fore transmission. On receipt, the planner would test the sig-
nature using the verified public key for that node.

Once the plan has been formulated, it is signed by the
planner, allowing each node to verify its authenticity before
deploying the selected adaptors. Note that in the case of pub-
lic key encryption, the reverse authentication process allows
each node to obtain the public key of the server.

4.5.4  Support for Virtual Link Encryption

The plan generated by Conductor must include provisions
for protecting sensitive data from untrusted nodes. A simple
way to accomplish this effect is to deploy encryption and
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decryption adaptors on all trusted nodes that need to adapt
plaintext data. If each trusted node encrypts the stream for
transmission to the next trusted node (where it can be de-
crypted), secure virtual links will be created between adjacent
trusted nodes, and a secure channel will be formed.

While wholesale encryption of the stream is an obvious
form of security adaptation, a variety of others can provide
various degrees of protection. Different types of encryption
may be used. Particular portions of the stream can be en-
crypted, perhaps just plaintext passwords or credit card num-
bers. Or, encryption might be avoided by removing sensitive
portions of the text.

Encryption requires secure key distribution. Since each
adaptor can use a unique encryption algorithm with a unique
key type, Conductor does not generate keys. Instead, each
adaptor specifies the type of key it requires and provides a
key generation function for that key type. After planning
completes, Conductor examines the plan on the server node,
determines what key types are required, and requests that
those keys be generated. Typically, for a given connection,
one key of each type can be used for each virtual link. For
example, if DES encryption adaptors are to be deployed on
several trusted nodes, a single DES key can be generated on
the planner node and distributed to each trusted node.

A copy of each key is packaged specifically for each node
requiring that key. For public key authentication, keys are
encrypted with the receiving node’s public key and signed
with the planner node’s private key. Thus, each packaged
key can only be decrypted using the private key of the in-
tended recipient, and the authenticity of the key can be ascer-
tained using the server's public key (obtained during reverse
authentication). The authentication scheme should be at least
as cryptographically strong as the encryption algorithm.

Conductor's security framework has been shown to have
very low overhead [20]. The overhead of individual authen-
tication schemes and encryption adaptors depends heavily on
the cost of communication with certificate authorities or key
servers and the cost of the required cryptographic operations.
Since Conductor allows selection of security modules of dif-
ferent strengths, the user can choose an appropriate method.

5 Experiences with Conductor

Conductor’s effectiveness can be measured by its ability to
improve the user’s experience through useful adaptations.
Thus we have obtained both experiences in real use as well as
empirical evidence of Conductor’s effectiveness.

Conductor has been deployed for a modest sized group of
mobile users to improve the behavior of their applications
over a variety of networks, including within an office LAN,
across residential links, and over various wireless networks.
Other users have also written and deployed their own adap-
tors for a variety of protocols, including POP and HTTP.

5.1

We have measured Conductor’s ability to adapt in three
scenarios similar to those described in Section 2. In one of

Experimental Results



these experiments, previously reported in [33], we created an
environment similar to that of a field archeologist from the
case study in Section 2.2. By powering down the wireless
interface while waiting for slow queries and compressing
transmitted data, Conductor was able to reduce the power
consumption of the user’s PDA by a factor of 10 and simul-
taneously multiply the throughput by a factor of 3.2.

Additional experiments were conducted to measure Con-
ductor’s performance in scenarios similar to the two addi-
tional case studies and to measure Conductor’s overheads. In
these experiments, each node consisted of an HP OmniBook
4150 laptop with a 500 Mhz Pentium III processor and 192
MB of memory running RedHat Linux 7 with kernel version
2.2.16. Conductor executed under IBM JDK 1.3. Apache
1.3.14 was used to serve the HTTP protocol. A custom
HTTP client was constructed in Java to allow accurate meas-
urements. The client was designed to mimic the actions of a
typical browser and supported up to three simultaneous
download streams. 100 Mbps PCMCIA Ethernet cards were
used for all non-bandwidth constrained links. A serial link
and PPP running at 56 Kbps (with no compression) were used
for low-bandwidth links. Frequency-hopping 802.11
PCMCIA wireless network cards were used for wireless
links. All results are reported with 95% confidence intervals.

We constructed a user-to-user network, like that of the
case study in Section 2.3 (Figure 2), in which two poorly
connected users are trying to share images captured by a digi-
tal camera. For simplicity, the HT'TP protocol was used for
transport, and three web pages were constructed with three
different sets of photographs: small (31 thumbnail JPEG im-
ages with a total size of 155 KB), medium (4 medium-sized
JPEG images with a total size of 867 KB), and large (1 large
JPEG image with a total size of 895 KB). For each dataset,
page download time was measured in two cases: with and
without Conductor. In the Conductor case, an adaptor to
convert the JPEG images to ASCII-art (using libaa [12]) was
deployed on the server and compression and decompression
adaptors were deployed on the server and client respectively.'
While not desirable in all cases, this adaptation represents one
of several that might be chosen, depending on user require-
ments and end-to-end network conditions. Results are shown
in Figure 11. In the medium and large photo cases, Conduc-
tor dramatically reduced the transfer time by reducing the
quality of the images, cutting the number of bytes transmitted
over the modem link by a factor of 7:1. In the small photo
case, the cost of this adaptation was only slightly less than the
gain in transmission speed. In this case, the number of bytes
transmitted was halved.

Connection startup time (defined as the time from the cli-
ent’s connect () call to the time data begins to flow to the
server) in the above hardware configuration with Conductor,

! This adaptor configuration assumes that the user does not have a graphical
display, delivering an ASClI-art formatted image. For users with a graphical
display, an ASCII-art browser plug-in could be constructed that could render
these images at roughly the same speed as any image or text page.
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Figure 11: User to user download times of digital camera photo sets with
and without Conductor fidelitv reduction.
including planning and adaptor deployment, was 556123 ms.
Startup time without Conductor was 109%1 ms.

We measured Conductor’s ability to support secure web
browsing over a limited channel with a network approximat-
ing that of the case study in Section 2.1 (Figure 1). Three
datasets were measured: the Apple home page” (41 files with
a total size of 92 KB), a Slashdot article® (10 files with a total
size of 187 KB), and a photo gallery similar to those in the
previous experiment (10 images totaling 550 KB). Conduc-
tor provided encryption at the server and the DSL router, de-
cryption at the ISP proxy and at the client, and prioritization
at the ISP proxy. For each web page, we took three meas-
urements. We measured the download time without Conduc-
tor or background traffic to obtain the best possible result that
prioritization could achieve. The download time was also
measured without Conductor but with background traffic
(generated by an additional download of a large file from the
server, to simulate a large software download). Finally, the
download time was measured with Conductor providing en-
cryption and prioritization. The results appear in Figure 12.
In all cases, Conductor reduced the download time of the web
page at the expense of the software download. In two of the
three cases, Conductor achieved nearly the theoretical limit
despite additional encryption costs.

Connection startup time for the above hardware configura-
tion with Conductor was 35801299 ms. The startup time
without Conductor was 601 ms. The slow startup time in
the Conductor case is primarily due to an interaction between
Conductor and the wireless hardware used in our experi-
ments. Successful tests with other wireless and Ethernet de-
vices indicate that it is not a fundamental problem with Con-
ductor. Preliminary measurements with other wireless hard-
ware indicate that connection setup, including secure key
distribution, can be accomplished in approximately 560 ms.

Conductor’s overheads were measured using four nodes
connected by a 100 Mbps Ethernet. Table 1 contains the
throughput observed while transferring 5 MB without adapta-

* http://www.apple/com, March 10, 2001.
? http://www.slashdot.org/articles/01/03/13/020208.shtml, March 13, 2001.
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Figure 12: Improvement in web download times using Conductor’s
prioritization and encryption adaptors.

tion through the four nodes, while the number of nodes on
which Conductor was deployed was varied. The data was
delivered to the network at a limited rate of no more than 5
Mbps to avoid swamping the PCMCIA bus bandwidth of our
hardware. A moderate overhead was observed in deploying
two Conductor nodes, compared with the non-Conductor (0
node) case. However, the incremental cost of additional
Conductor nodes is very low. Table 2 contains the through-
put through the same set of nodes, all running Conductor,
while the number of null adaptors (an adaptor that efficiently
forwards unadapted data) deployed on one of the nodes is
varied. Note that the incremental cost of additional null
adaptors is also very low.

Connection startup time in the above hardware configura-
tion with Conductor was 80.71£30.2 ms. The startup time
without Conductor was 1.01£0.01 ms.

# of Conductor

Nodes 0 1 2 3 4
Throughput 4254 4171 | 4173 | 4173
(Kbps) 16 13 13 13

Table 1: Throughput with varying numbers of Conductor nodes.

# of Null

Adaptors 0 ! 2 3 4
Throughput 4173 | 4173 | 4173 | 4175 | 4174
(Kbps) 3 3 3 3 3

Table 2: Throughput with varying numbers of null adaptors.

52

These experiments have shown that deployment of the
right combination of adaptors at the right points in the net-
work can greatly improve the user’s experience. In the se-
cure web-browsing example, careful coordination of adapta-
tions enabled the deployment of both encryption and prioriti-
zation. In the user-to-user picture-sharing example, the cor-
rect adaptation choice depended on end-to-end network char-
acteristics. In addition, dramatically reduced download times

Discussion of Results
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were possible because an extreme adaptation was available
and acceptable to the user.

While these adaptations were designed to perform well in
networks similar to our experimental setup, they would not
always be appropriate. For example, while preliminary evi-
dence suggests that prioritization would benefit our datasets
over links up to 112Kb/s, this adaptation would clearly be
counterproductive in a high-bandwidth network. Similarly,
the ASCII-art adaptation is not beneficial when image proc-
essing time (a few hundred milliseconds to a small number of
seconds on our experimental hardware, depending on image
size) is close to or greater than the transmission time of the
unadapted image. However, Conductor would correctly han-
dle these cases by not selecting the ASCII-art adaptor when
no network bottleneck exists. The adaptor could also be
modified to pass small images without alteration (unless the
receiving devices cannot display graphics).

The additional startup costs imposed by Conductor are ac-
ceptable for most applications, including interactive sessions
and connections with a lifespan of more than a few seconds.

In our experiments, the 56Kb/s serial channel’s PPP com-
pression was turned off, for several reasons. First, the ex-
perimental results are easier to interpret with an underlying
channel that provides equal bandwidth to all transmitted data.
Second, using the PPP compression rather than a compres-
sion adaptor would not have given a clear presentation of the
performance of Conductor adaptors. Third, such compres-
sion is not always available and not always sufficient, either
because the data is incompressible or because the resulting
performance is insufficiently improved. Conductor can offer
a greater variety of adaptations, including some with very
drastic and special-purpose results. Finally, adaptations per-
formed at lower layers can be incompatible with adaptations
performed at higher layers. In the secure web-browsing ex-
ample, had the modem link been considered insecure, PPP
compression would have been rendered ineffective by en-
cryption. Conductor, on the other hand, would arrange for a
proper ordering of encryption and compression adaptors.

6  Other Approaches

There are at least three approaches to making applications
degrade gracefully: situation-specific applications, adaptable
applications, or an adaptive service within the network.

6.1

Users of substandard networks may choose applications
specially designed for their situation. The PalmVII wireless
device replaces a general-purpose web browser with "clip-
ping" applications [22] that provide a unique interface to spe-
cific web pages. Because each custom-built clipping applica-
tion requires a proxy host to filter responses from the associ-
ated web server, this solution has scaling problems.

As another example, many users who access the Internet
through a slow modem or wireless network use a text-based
browser rather than a graphical browser to avoid the delays of
downloading images. Mobile users who split time between

Situation-Specific Applications



wired and wireless access must manually switch between
interfaces depending on their network connectivity, or accept
imageless pages even when wired.

6.2

Applications can automatically identify the characteristics
of the network and tailor their behavior accordingly. For
example, RealPlayer [23] can select a version of a video or
audio stream most appropriate for the connectivity available
to the client (as specified by the user). Programming or OS
support can aid in building adaptable applications.

Both Rover [13] and Odyssey [21] provide tools that help
developers build applications that automatically adapt to
changing network conditions. Odyssey provides a system-
level service that monitors network conditions, informing
applications of changes and helping them adapt transmitted
data to prevailing conditions. Odyssey illustrates the value of
cooperation between an application and the operating system,
as well as cooperation between applications. Rover is an
application development toolkit that provides higher-level
networking abstractions for data migration and disconnected
operation, simplifying the design of adaptable applications.

Researchers have also suggested methodologies for parti-
tioning an application to adapt its communication pattern to
network conditions. For example, partitioning can allow ag-
gregating functions to occur close to a data source(s) when
bandwidth is low or for lookup functions to be performed
close to the client when connectivity is intermittent. Several
partitioning methodologies have been proposed [16] [30].

Application development tools such as these can help build
adaptable applications without programmer knowledge of
networking details. However, substantial effort is required to
design new applications or retrofit existing applications.
Also, these tools are designed primarily to deal with commu-
nications between a single mobile client and a fixed server
across one bad link, not heterogeneous networks.

6.3

A powerful way to allow applications to be more adaptable
is to alter their communication protocols and data from
within the network. Selected nodes within the network can
monitor and modify packets generated by applications as they
flow through the network.

The Snoop protocol [3] improves TCP performance over
wireless links by providing caching and quick retransmission
of packets from a gateway between the wired and wireless
networks. The Protocol Boosters adaptation framework [5],
an application-level analog of Snoop, allows pairs of adapta-
tion modules to be transparently deployed, adding new fea-
tures to existing protocols, such as forward error correction.
Protocol Boosters provide lossless adaptation, since the sys-
tem has no support for reliable delivery if some packets are
dropped or permanently altered. Protocol Boosters are com-
posable, but the system does not provide support for deter-
mining if a given set of boosters will perform well together.

Adaptable Applications

Adaptability as a Network Service
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Transformer Tunnels [27] use IP tunneling to alter the be-
havior of a protocol over a troublesome link. Transformer
Tunnels usually provide protocol-independent adaptations,
such as consolidation of packets, scheduling of transmissions
to preserve battery power, encryption, lossless compression,
and buffering. Transformer Tunnels are transparent to appli-
cations, but do not support composition of adaptations.

One of the most advanced proxy solutions is the Berkeley
proxy [7]. This system can provide a wide variety of applica-
tion-level adaptations to a large number of mobile PDA users.
A high degree of reliability and scalability has been achieved
by leveraging cluster-computing technology. The Berkeley
researchers have also investigated methods of composing
adaptations on a single machine [9].

Mowgli [17] improves web performance across low-
bandwidth, high-latency GSM channels by breaking the
channel into two segments at a proxy. Between the client
node and the proxy, custom protocols replace both TCP and
HTTP, improving link utilization and supporting discon-
nected operation. Columbia University [35] provides a gen-
eral-purpose framework that allows mobile clients to dy-
namically load and control adaptive “filters” on a proxy node
at the edge of the wired network. While both of these sys-
tems improve the user’s experience, neither addresses multi-
ple coordinated adaptations, reliability, or security.

Active networks add generalized adaptability into the net-
work infrastructure [28] [31]. Each packet potentially exe-
cutes special code at each visited router to determine its
proper handling. Key design issues in active networks re-
main unsolved, including security, cost, and proper architec-
tures. Active network researchers are only beginning to look
at composability of adaptations and reliability. In the long
term, active networks may provide a superior adaptation in-
frastructure, but their success is not yet certain.

Research into adaptation within the network has shown
that worthwhile adaptation can be accomplished outside of
the application itself. Further, adapting application-level pro-
tocols, rather than providing generic adaptations at the trans-
port level, can often obtain the best results. Research in this
area, however, has focused on providing a single adaptation
for a single suboptimal link, usually the last mile.

7  Conclusions

New technologies will increase network heterogeneity
over the coming years. To be useful in this environment,
applications will have to gracefully adjust to prevailing net-
work conditions. Distributed adaptation can play an impor-
tant role in assisting applications to meet this challenge.

Conductor demonstrates that systems-level support for
gracefully degrading application services is both desirable
and achievable. Previous solutions that support adaptation at
the endpoints or at individual proxy nodes are frequently in-
sufficient when network heterogeneity extends beyond the
last mile. Instead, our experiences with Conductor have
shown that greater benefits can often be achieved through
coordinated, multi-site adaptation.



Distributed adaptation cannot be achieved by deploying
multiple instances of individual adaptation services, but nei-
ther does it require a fully programmable network. Instead,
Conductor enables distributed adaptation in an incrementally
deployable fashion by providing three key facilities: reliabil-
ity, distributed planning, and security. Conductor includes a
reliability model based on semantic segmentation that pre-
serves exactly-once, in-order delivery of semantic meaning,
allowing each data stream to be reliably adapted. Conductor
provides a planning infrastructure that allows a fully coordi-
nated set of adaptors to be selected based on end-to-end net-
work conditions. The planning process can be secured (to a
desired level), ensuring that only desired adaptations are per-
formed and only at trusted nodes. Experimental evidence
shows that these facilities can be provided at a sufficiently
low cost.

By focusing on adapting protocols and not applications,
Conductor is able to provide these services in an application-
transparent manner. By remaining fundamentally applica-
tion-transparent, Conductor allows adaptation of existing and
closed-source applications as well as allowing application
developers to focus on their applications, rather than the intri-
cacies of current and future network technologies. At the
same time, Conductor does not rule out the possibility of
greater application-level control of adaptation through a fu-
ture application-aware API.

Given the Conductor framework, building coordinated and
distributed adaptation is relatively straightforward. An adap-
tation developer needs only focus on understanding applica-
tion-level protocols, the desired adaptation, and the Conduc-
tor API. Conductor provides for the selection and secure
deployment of such adaptors, according to prevailing condi-
tions and the desires of the user, and ensures that coherent
data is delivered, despite failures.
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